• Title/Summary/Keyword: Unbalance Vibration Response

Search Result 93, Processing Time 0.027 seconds

Model Validation and Controller Design for Vibration Suppression of Flexible Rotor Using AMB

  • Soo Jeon;Ahn, Hyeong-Joon;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1583-1593
    • /
    • 2002
  • This paper discusses the model validation and vibration suppression of an AMB flexible rotor via additional LQG controller. The main difficulty in the vibration suppression of the flexible rotor using AMB is to realize a controller that can minimize resonance without injuring the stabilized rigid modes. In order to solve this problem, simple scheme for system modeling and controller design are developed. Firstly, the AMB flexible rotor is stabilized with a PID controller, which leads to a new stable rotor-bearing system. Then, authors propose the model validation procedure using measured open-loop frequency responses to obtain an accurate model of the AMB flexible rotor system. After that, LQG controller with modal weighting is designed to suppress resonances of the stable rotor-bearing system. Due to the poor controllability and observability of flexible modes compared to rigid ones, balancing of two Gramians is prerequisite for the fair LQG controller design. Simulation with step disturbance and experimental results of unbalance response up to 10,000 rpm verified the effectiveness of the proposed scheme.

Analysis on the Dynamic Response of Vertical Pumps Subjected to Arbitrary Foundation Excitation (임의 기초여진에 의한 입형 펌프의 동적 응답해석)

  • 여운동
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.1
    • /
    • pp.57-64
    • /
    • 1990
  • It is important in design of vertical pumps to consider arbitrary foundation excitation in addition to rotor vibration due to unbalance. In this study, a model of a vertical pump was developed for the analysis of its dynamic response. The vertical pump was modeled with lumped masses and springs which represent mult-cylinderical and rotor structure. A dynamic simulation program was developed and numerical calculation on the above mentioned problems were carried out.

  • PDF

Rotordynamic Analysis of a Turbo-Chiller with Varying Gear Loadings Part I ; A Driving Motor-Bull Gear Rotor-Bearing System (터보 냉동기의 변동 기어하중을 고려한 로터다이나믹 해석 Part I : 구동 모터-불기어 로터-베어링 시스템)

  • 이안성;정진희
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.593-599
    • /
    • 1999
  • A rotordynamic analysis is performed with a motor-bull gear rotor system supported on two partial bearings, which is intended to drive a high-speed turbo-chiller compressor impeller shaft through its built-in pinion gear. The motor-bull gear rotor system has a rated speed of 3,600 rpm, and is modeled utilizing the finite element method for analysis. As loadings on the bearings due to the gear action are significant in the system considered, each resultant bearing load is calculated statically by considering the generalized forces of the gear action as well as the rotor itself. The two support partial bearings are designed to take their varying loads along with their varying load angles, and they are also analyzed to give their rotordynamic coefficients. Then, a complex rotordynamic analysis of the motor-bull gear rotor-bearing system is carried out to evaluate its whirl natural frequencies and mode shapes and unbalance responses under various loading conditions. Results show that the bearings and entire rotor system are well designed regradless of operating conditions, i.e., loads and operating speeds.

  • PDF

Optimum Design of Rotor System Considering Fuzzy Constraints (퍼지 구속조건을 고려한 회전축계의 최적설계)

  • 양보석;공영모
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.39-49
    • /
    • 1992
  • The dynamic design object of rotor system is to optimize the system in stability at the operating speed, unbalance response in the vicinity of the rotor critical speed, bearing weighting and system weighting. In conventional optimization method, designers have to set mathematical modeling, such as objective function, constraints and design parameters, strictly and quantitavely. But in actual design process, they do not treat all of these values strictly and some of them are somehow "fuzziness". So, considering boundary conditions of seal diameter, clearance, and length in a typical double suction centrifugal pump is fuzzy, this paper is considered fuzzy in constraints. Fuzzy method is used .alpha.-level cut method. Then, the optimum dimensions of seal according to values are obtained and vibration characteristics are investigated.estigated.

  • PDF

The design and evaluation of automatic balancing equipment for the grinding machine (연삭기용 자동 밸런싱 장치의 설계 및 평가)

  • 장홍석;최대봉;황주호;홍준희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.309-314
    • /
    • 2001
  • The balance of high speed spindle system with high precision rotation like grinding machine is very important. Traditionally, we use trial and error method to balance the spindle. It takes much time. So we are developing the automatic balancing equipment being used in the grinding machine. The balancing head we develop is wireless. It will be used high-speed grinding machine. We use influence coefficient method to control the automatic balancer. Experiments are based on automatic and manual balancing. We perform test of the vibration filter. It helps to remove noise. The filter and experiments with automatic balancing controller show that automatic balancing control can be successfully achieved with the quick response and good stability characteristics.

  • PDF

Dynamic Characteristics Analysis of Rotor-Bearing System with Support Structures (지지구조물을 고려한 로터-베어링 시스템의 동 특성해석)

  • 박성훈;오택열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.547-550
    • /
    • 1997
  • The dynamic behavior of rotor-bearing system has been investigated using finite element method. A procedure is presented for dynamic modeling of rotor-bearing system which consist of shaft elements, rigid disk, flexible bearing and support structures. A finite element model including the effects of rotary inertia, shear deformation, gyroscopic moments is developed. Linear stiffness and damping coefficient are calculated for 3 lobe sleeve bearing. The whirl frequency, mode shape, stability and unbalance response of rotor system included effect of bearing coefficient and support structures are calculated.

  • PDF

Rotordynamic Design of the Micro Gas Turbine Supported by Air Foil Bearings (공기포일베어링에 지지된 마이크로가스터빈의 회전체동역학적 설계)

  • Kim, Young-Cheol;Han, Jung-Wan;Kim, Kyung-Woong;Kim, Soo-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.662-667
    • /
    • 2003
  • This paper presents a performance analysis of the 1st generation bump foil journal bearings for the micro gas turbine TG75. Static performances such as load capacity and attitude angle are estimated by using soft elasto-hydrodynamic analysis technique, and dynamic performances such as stiffness and damping coefficients are estimated by perturbation method. Rotordynamic analysis for TG75 is performed by using the bearing analysis results. TG75 rotor has 2 horizontal and vertical directional natural modes due to the bearing stiffness characteristics. TG75 rotor will be stably operated between the 1st bending mode at 33000cpm and the 2nd bending mode at 85500cpm. Unbalance response analysis results satisfy the API vibration criteria.

  • PDF

Analytical Evaluation of Rotor Dynamic Characteristic of Roots Type Vacuum Pump (루츠타입 진공펌프 동특성의 해석적 평가)

  • Lee, Jong-Myeong;Kim, Yong-Hwi;Ha, Jeong-Min;Gu, Dong-Sik;Choi, Byeong-Keun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1112-1119
    • /
    • 2011
  • The goal of this study is the stability evaluation of a vacuum pump through modal test and rotor dynamics. Roots type vacuum pump, which is a dry vacuum pump, is necessary for the manufacturing process of the semiconductor and the display. Eigenvalue was solved by the finite-element method(FEM) using 2D and 3D models, then the modal test result was compared with the FEM result. According to the comparison, the analysis result using the 2D was more accurate than the 3D model. Therefore, rotor dynamics was performed by the 2D model. Campbell diagram and root-locus maps, which were calculated by complex-eigenvalue analysis, were used to evaluate the stability of the rotors of the vacuum pump. And displacement solved by unbalance response analysis was compared with the minimum clearance between two rotors of the vacuum pump. Thus, the vacuum pump is assumed operated under steady state through the evaluation of the rotor dynamics.

Forward and backward whirling of a spinning nanotube nano-rotor assuming gyroscopic effects

  • Ouakad, Hassen M.;Sedighi, Hamid M.;Al-Qahtani, Hussain M.
    • Advances in nano research
    • /
    • v.8 no.3
    • /
    • pp.245-254
    • /
    • 2020
  • This work examines the fundamental vibrational characteristics of a spinning CNT-based nano-rotor assuming a nonlocal elasticity Euler-Bernoulli beam theory. The rotary inertia, gyroscopic, and rotor mass unbalance effects are all taken into consideration in the beam model. Assuming a nonlocal theory, two coupled 6th-order partial differential equations governing the vibration of the rotating SWCNT are first derived. In order to acquire the natural frequencies and dynamic response of the nano-rotor system, the nonlinear equations of motion are numerically solved. The nano-rotor system frequency spectrum is shown to exhibit two distinct frequencies: one positive and one negative. The positive frequency is known as to represent the forward whirling mode, whereas the negative characterizes the backward mode. First, the results obtained within the framework of this numerical study are compared with few existing data (i.e., molecular dynamics) and showed an overall acceptable agreement. Then, a thorough and detailed parametric study is carried out to study the effect of several parameters on the nano-rotor frequencies such as: the nanotube radius, the input angular velocity and the small scale parameters. It is shown that the vibration characteristics of a spinning SWCNT are significantly influenced when these parameters are changed.

Study on the prevention of spragging in a tilting pad journal bearing using the variation of preload (예압 변경을 통한 틸팅패드 저널베어링의 Spragging 방지에 관한 연구)

  • Yang, Seong-Heon;Park, Chul-Hyun;Ha, Hyun-Cheon;Kim, Chae-Sil
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.281-286
    • /
    • 2001
  • Tilting pad journal bearings have been widely used in a high speed rotating machinery, such as steam turbines and gas turbines, owing to their inherent stability characteristics. However, some peculiar fatigue failure in the babbitt metal due to spragging has been continuously occurred at the leading edge of the upper pads. The spragging is defined as the pad vibration initiated on the upper unloaded pads in a tilting pad journal bearing. This paper describes both several kinds of bearing failure related with spragging and the theoretical investigation on the prevention of the spragging phenomenon using the variation of preload. Results show that positive preload(m>0.5) assures all pads remain statically loaded under all operating conditions. For the change of design parameter to prevent spragging, thermo-hydrodynamic lubrication and rotor dynamic analysis were performed to verify temperature limitation on bearing and vibration problems on rotor bearing system.

  • PDF