• 제목/요약/키워드: Unbalance Response Control

검색결과 31건 처리시간 0.023초

뉴로-퍼지를 이용한 플라이휠 제어에 관한 연구 (Control of Magnetic Flywheel System by Neuro-Fuzzy Logic)

  • 양원석;김영배
    • 한국정밀공학회지
    • /
    • 제22권6호
    • /
    • pp.90-97
    • /
    • 2005
  • Magnetic flywheel system utilizes a magnetic bearing, which is able to support the shaft without mechanical contacts, and also it is able to control rotational vibration. Magnetic flywheel system is composed of position sensors, a digital controller, actuating amplifiers, an electromagnet and a flywheel. This work applies the neuro-fuzzy control algorithm to control the vibration of a magnetic flywheel system. It proposes the design skill of an optimal controller when the system has structured uncertainty and unstructured uncertainty, i.e. it has a difficulty in extracting the exact mathematical model. Inhibitory action of vibration was verified at the specified rotating speed. Unbalance response, a serious problem in rotating machinery, is improved by using a magnetic bearing with neuro-fuzzy algorithm.

공작기계 주축시스템의 능동 밸런싱 장치에 관한 연구 (A Study on the Active Balancing Device for Spindle System of Machine Tools)

  • 문종덕;김봉석;김도형;이수훈
    • 한국소음진동공학회논문집
    • /
    • 제15권3호
    • /
    • pp.297-305
    • /
    • 2005
  • A high-speed spindle can be very sensitive to rotating mass unbalance which has harmful effect on many machine tools. Therefore, the balancing procedure to reducevibration in rotating system is certainly needed for all high-speed spindles. An active balancing program using influence coefficient method and an active balancing device of an electro-magnetic type have been applied to the developed high-speed spindle system in this study. A reliable gain-scheduling control using influence coefficients of the reference model although system characteristics are changed is applied. The stability of reference influence coefficients is verified by frequency response functions. The active balancing experiment for the developed high-speed spindle during operation is well performed with an active balancing program and device. As a result, controlled unbalance responses are below the vibration limit at all rotating speed ranges with critical speed.

New Control Scheme for the Wind-Driven Doubly Fed Induction Generator under Normal and Abnormal Grid Voltage Conditions

  • Ebrahim, Osama S.;Jain, Praveen K.;Nishith, Goel
    • Journal of Power Electronics
    • /
    • 제8권1호
    • /
    • pp.10-22
    • /
    • 2008
  • The wind-driven doubly fed induction generator (DFIG) is currently under pressure to be more grid-compatible. The main concern is the fault ride-through (FRT) requirement to keep the generator connected to the grid during faults. In response to this, the paper introduces a novel model and new control scheme for the DFIG. The model provides a means of direct stator power control and considers the stator transients. On the basis of the derived model, a robust linear quadratic (LQ) controller is synthesized. The control law has proportional and integral actions and takes account of one sample delay in the input owing to the microprocessor's execution time. Further, the influence of the grid voltage imperfection is mitigated using frequency shaped cost functional method. Compensation of the rotor current pulsations is proposed to improve the FRT capability as well as the generator performance under grid voltage unbalance. As a consequence, the control system can achieve i) fast direct power control without instability risk, ii) alleviation of the problems associated with the DFIG operation under unbalanced grid voltage, and iii) high probability of successful grid FRT. The effectiveness of the proposed solution is confirmed through simulation studies on 2MW DFIG.

계통 불평형시 과도 응답 특성이 개선된 고압 이중여자 유도형 풍력발전 시스템의 제어 전략 (Control Strategy of Improved Transient Response for a Doubly Fed Induction Generator in Medium Voltage Wind Power System under Grid Unbalance)

  • 한대수;서용석
    • 전력전자학회논문지
    • /
    • 제20권1호
    • /
    • pp.91-103
    • /
    • 2015
  • This paper investigates control algorithms for a doubly fed induction generator with a back-to-back three-level neutral-point clamped voltage source converter in a medium-voltage wind power system under unbalanced grid conditions. Negative sequence control algorithms to compensate for unbalanced conditions have been investigated with respect to four performance factors: fault ride-through capability, instantaneous active power pulsation, harmonic distortions, and torque pulsation. The control algorithm having zero amplitude of torque ripple indicates the most cost-effective performance in terms of torque pulsation. The least active power pulsation is produced by a control algorithm that nullifies the oscillating component of the instantaneous stator active and reactive power. A combination of these two control algorithms depending on operating requirements and depth of grid unbalance presents the most optimized performance factors under generalized unbalanced operating conditions, leading to a high-performance DFIG wind turbine system with unbalanced grid adaptive features.

하드디스크 드라이브 회전축계의 강제진동해석 (Forced Vibration Analysis of the Hard Disk Drive Spindle Systems)

  • 임승철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1601-1608
    • /
    • 2000
  • This paper is concerned with the forced flexural vibration analysis of hard disk drive (HDD) spindle systems with multiple thin disks, supported by two ball bearings based on the finite element model. This is the extension of the previous work which analytically modeled every system component taking into account its structural flexibility and also the centrifugal stiffening effect especially for the disks. Among the end results, the forced time response is expectedly useful for the vibration control of the spindle itself or the position servo control of the magnetic head. On the other hand, the steady state responses such as the frequency response function and the unbalance response are useful for system identification. Futhermore, through a coordinate transformation the equations of motion is also derived with respect to the inertial frame for convenient analyses of certain classes.

  • PDF

Quantitative Feedback Theory를 이용한 능동 자기베어링의 적용 연구 (A Study for Application of Active Magnetic Bearing using Quantitative Feedback Theory)

  • 이관열;이형복;김영배
    • 한국정밀공학회지
    • /
    • 제18권11호
    • /
    • pp.107-115
    • /
    • 2001
  • Most of rotating machineries supported by contact bearing accompany lowering efficiency, vibration and wear. Moreover, because of vibration, which is occurred in rotating shaft, they have the limits of driving speed and precision. The rotor system has parametric variations or external disturbances such as mass unbalance variations in long operation. Therefore, it is necessary to research about magnetic bearing, which is able to support the shaft without mechanical contact and to control rotor vibration without being affected by external disturbances or parametric changes. Magnetic bearing system in the paper is composed of position sensor, digital controller, actuating amplifier and electromagnet. This paper applied the robust control method using quantitative feedback theory (QFT) to control the magnetic bearing. It also proposed design skill of optimal controller, in case the system has structured uncertainty, unstructured uncertainty and disturbance. Reduction of vibration is verified at critical rotating speed even external disturbance exists. Unbalance response, a serious problem in rotating machinery, is improved by magnetic bearing using QFT algorithm.

  • PDF

능동 제어 베어링으로 지지된 축-베어링 시스템의 동특성에 관한 연구 (A Study on Dynamic Characteristics of a Rotor-Bearing System Supported by Actively Controlled Hydrodynamic Journal Bearing)

  • 노병후;김경웅
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.635-638
    • /
    • 2001
  • This paper presents the dynamic characteristics of r rotor-bearing system supported by an actively controlled hydrodynamic journal bearing. The proportional, derivative and integral controls are adopted for the control algorithm to control the hydrodynamic journal bearing with an axially groove. Also, the cavitation algorithm implementing the Jakobsson-Floberg-olsson boundery condition is adopted to predict cavitation regions in the fluid film more accurately than conventional analysis, which uses the Reynolds condition. The speed at onset of instability of a rotor-bearing system is increased by both proportional and derivative control of the bearing. The integral control has no effect on stability characteristics of hydrodynamic journal bearing. The PD-control is more effective than proportional or derivative control. Results show the active control of bearing can be adopted for the stability improvement of a rotor-bearing system.

  • PDF

비대칭 3상 가변형 셀프 베어링 스텝모터의 해석 및 제어 (Analysis and Control of an Unsymmetrical 3-Phase VR Type Self Bearing Step Motor)

  • 김대곤
    • 제어로봇시스템학회논문지
    • /
    • 제7권10호
    • /
    • pp.806-811
    • /
    • 2001
  • The analysis and control algorithm of a new type unsymmetrical self-bearing step motor is presented. The motor actuator is used for both motor and bearing functionality without any redundant coil windings or redudant electromagnets for bearing functionality. Self bearing step motor layout and control current generation method for unsymmetrical position of electromagnets are described. This new current generation method without additional current for bearing functionality leads to minimize the power loss. As the result of the unbalance response approach, the constant torque is possible, even though the bearing functionality is added or not.

  • PDF

비선형성 해석에 의한 화력발전소 터어빈 제어계통에 관한 연구 (The improvement of control strategy in thermal power plant turbine system by nonlinear analysis)

  • 황재호;이정준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.567-571
    • /
    • 1989
  • This paper describes the improvement of thermal power plant turbine control system by analyzing nonlinear characteristics. The turbine control depends on the frequency variation and boiler condition. The nonlinearity of turbine control is the result of governor/valve properties, steam condition and boiler thermal unbalance. Nonlinear analysis is divided into two; main steam valve position - turbine output anal governor response. Of course, every analysis must be done on considering plant operating condition. In this paper, after analyzing turbine control nonlinearity by numerical method and actual results, the sensitive operating load which corresponds to frequency is proposed, on guarranteed boiler stability. This idea is implemented at Pyung Tack thermal power plant, and the practical results are showed.

  • PDF