• Title/Summary/Keyword: Umbrella Arch Method

Search Result 31, Processing Time 0.017 seconds

Three-Dimensional Finite Element Analysis on Tunnel Behaivor Reinforced by Umbrella Arch Method (3차원 유한요소해석에 의한 Umbrella Arch 공법으로 보강된 터널의 거동 해석)

  • 유충식;신승우
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1995.10a
    • /
    • pp.211-216
    • /
    • 1995
  • In recent years, Natm has been successfully applied to difficult ground conditions with the use of soil-perservention methods which promote face stability and restrict excessive ground movement. When the tunnle excavation od made through difficult ground like highly weathered rock, the umbrella arch method is often adopted which pre-reinforceas tunnel crown periphery using a stiff shell-shaped structure. The umbrella arch method was originally developed in Itali, and has recently been confirmed its effectiveness in Korea as well. However, no in depth study on the umbrella arch method has been conducted ans as a result no rational analysis/design method is available at present. Therefore this study was undertaken with the aim of identifying the basic reinforcing mechanism and satablishing both qualitative and quantiative relationships between various design parameters and ground movements.

  • PDF

Displacement Behavior of Tunnel under Bridge Abutment due to Supporting Systems (교량기초 하부에 위치한 터널의 지보방법에 따른 변위거동)

  • Yoo, Nam-Jae;Park, Byung-Soo;Jeong, Gil-Soo;Kim, Seung-Ryul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.613-620
    • /
    • 2005
  • This research is experimental paper to prepare the structural safety of the upper bridge for support type on tunnel and the effect of settlement. Unit weight test and uni-axial compression test have been performed to simulate the physical property of foundation on the tunnel. Tunnel model of slip form type for centrifuge model has been developed to performed the tunnel excavation while field stress is activated. And the support type of tunnel such as umbrella arch method and large diameter steel pipe reinforce method has been tested for the centrifuge model. After the analysis of experiment, results show that internal displacement of large diameter steel pipe reinforce method is smaller than that of the umbrella arch method.

  • PDF

The Support Types of the Tunnel for Centrifuge Model (터널의 지보방법에 관한 원심모형실험(遠心模型實驗))

  • Yoo, Nam-Jae;Lee, Myung-Woog;Park, Byung-Soo
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.199-209
    • /
    • 2002
  • This research is experimental thesis to prepare the structural safety of the upper bridge for support type on tunnel and the effect of settlement. Unit weight test and uni-axial compression test have been performed to simulate the physical property of foundation on the tunnel. Tunnel model of slip form type for centrifuge model has been developed to performed the tunnel excavation while field stress is activated. And the support type of tunnel such as umbrella arch method and large diameter steel pipe reinforce method has been tested for the centrifuge model. After the analysis of experiment, results show that internal displacement of large diameter steel pipe reinforce method is smaller than that of the umbrella arch method.

  • PDF

A Study on the Prediction of Surface Settlement Applying Umbrella Arch Method to Tunnelling (Umbrella arch 공법의 적용에 따른 횡방향 지표침하량 예측에 관한 연구)

  • 김선홍;문현구
    • Tunnel and Underground Space
    • /
    • v.12 no.4
    • /
    • pp.259-267
    • /
    • 2002
  • Recently, Umbrella Arch Method(UAM) is commonly used in order to enhance the stability of tunnel itself and stabilize the adjacent surface structure. But quantitative estimation of reinforcement effect is needed because UAM is designed and constructed only on the basis of empirical experience. By using 3-dimensional finite element method, parametric study is performed for elastic modulus of ground and overburden, and reinforcement effect is analyzed quantitatively. From the results, surface settlement decreases about 9%∼27% in soil tunnel, about 4%∼24% in weathered rock tunnel and 4%∼17% in soft rock tunnel when applied with UAM. The prediction equation for final surface settlement is suggested through regression analysis and the equation is expressed as exponential function which has variable Smax, unknown coefficient i and k.

A Numerical Study on Reinforced effect of the Railway Tunnel by Umbrella Arch Method (Umbrella Arch 공법이 적용된 철도터널의 강관보강효과에 관한 수치해석적 연구)

  • Lee Hyun Suk;Lee Jun S.;Bang Chun Suk;Kim Yun Tae
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1090-1095
    • /
    • 2004
  • Umbrella Arch Method(UAM), among others. is commonly applied to increase the facial stability during tunnel excavation and, depending on the field condition, additional reinforcement techniques can be used simultaneously. UAM, together with grouting method, is normally used to reduce ground permeability and improve stability of the tunnel by inserting a series of steel pipes into the ground around the crown inclined to the longitudinal axis of the tunnel. However. there has not been much rigorous study on the effectiveness of UAM, and most of UAM installations depend on empirical judgement rather than on engineering calculation, .In this study, the effectiveness of UAM is demonstrated based on the constitutive relationship involving UAM derived from the mechanics of composite material, and the numerical investigation is compared with small scale experiments on the tunnel reinforcement.

  • PDF

A Numerical Study on the Behavior of Steel Pipes in Umbrella Arch Method (Umbrella Arch 공법 적용시 강관의 거동에 관한 수치해석적 연구)

  • 차민웅;이승도;문현구
    • Tunnel and Underground Space
    • /
    • v.14 no.1
    • /
    • pp.26-34
    • /
    • 2004
  • The effectiveness of UAM is generally accepted, but there has not been much rigorous study on UAM and its mechanical support mechanism is yet to be established. Also, most of UAM installations depend on empirical judgement rather than on engineering knowledge. In this study, an attempt to confirm the support effects and to understand the support mechanism of UAM has been made by analyzing the mechanical behavior of umbrella pipes installed in various ground conditions. The effects of overburden thickness, pipe size, overlap length and the placement of steel arch are studied using a three-dimensional finite element method. From the numerical parametric study, the support mechanism of UAM has been confirmed by analyzing the structural forces in the umbrella pipes due to the excavation.

A Study on the Ground Movement around Tunnel Reinforced by Umbralla Arch Method (Umbrella Arch 공법에 의한 터널 천단부 보강시 주변 지반의 거동에 관한 연구)

  • 배규진;김창용;문홍득;훙성완
    • Tunnel and Underground Space
    • /
    • v.7 no.4
    • /
    • pp.299-309
    • /
    • 1997
  • Soil and rock improvement and reinforcement techniques are applied to achieve safe tunnel excavation in difficult geological conditions. The Umbrella Arch Method(UAM), one of the auxiliary techniques, is used to reduce ground permeability and improve stabtility of the tunnel by inserting a series of steel pipes into ground around the crown inclined to the longitudinal axis of the tunnel. Additionally, multi-step grouting is added through the steel pipes. UAM combines the advantages of a modern forepoling system with the grouting injection method. This technique has been applied in subway, road and utility tunneling sites for the last few years in Korea. This paper presents the results of analysis of the case studies on ground movements associated with UAM used in the Seoul Subway line 5 constructon site. Improvement of tunnel stability and decrease of ground settlement expected with pipe insertion are also discussed. Finally, the method to minimize ground settlements caused by NATM tunnelling are suggested.

  • PDF

A Study on the Three Dimensional Finite Element Analysis for the Tunnel Reinforced by Umbrella Arch Method (Umbrella Arch 공법이 적용된 터널의 3차원 유한요소 해석에 관한 연구)

  • 김창용;배규진;문현구;최용기
    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.209-225
    • /
    • 1998
  • Recently, Umbrella Arch Method(UAM), one of the auxiliary techniques for tunnelling, is used to reinforce the ground and improve stability of tunnel face. Because UAM combines the advantages of a modern forepoling system with the grouting injection method, this technique has been applied in subway, road and utility tunnel sites for the last few years in Korea. Also, several research results are reported on the examination of the roles of inserted pipes and grouted materials in UAM. But, because of its empirical design and construction methodology, more qualitative and systematic design sequences are needed. Therefore, above sequences using numerical analysis are proposed and, the effects of some design parameters were studied in this research. In order to acco,mplish these objects, first, the roles of pipe and grouting materials, steel-rib and the others in ground improving mechanism of UAM are clarified. Second, the effects of design parameters are investigated through parametric studies. Design parameters are as follows; 1) ground condition, 2) overburden, 3) geometrical formulation of pipes, 4) grouting region and 5) characteristics of pipes.

  • PDF

Design of umbrella arch method based on adaptive SVM and reliability concept (Adaptive SVM 기법 및 신뢰성 개념을 적용한 강관다단공법의 설계기법 연구)

  • Lee, Jun S.;Sagong, Myung;Park, Jeongjun;Choi, Il Yoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.4
    • /
    • pp.701-715
    • /
    • 2018
  • A reliability based design approach of the tunnel reinforcement with umbrella arch method was considered to better represent the uncertainties of the weak rock properties around the tunnel. For this, a machine learning approach called an Adaptive Support Vector Machine (ASVM) together with the limit equilibrium method were introduced to minimize the iteration numbers during the classification training of the tunnel stability. The proposed method was compared with the results of typical Monte Carlo simulations. It was concluded that the ASVM was very efficient and accurate to calculate the probability of failure having auxiliary umbrella arches and uncertain material properties of the tunnel. Future work will be concentrated on the refinement of the fast adaptation of the SVM classification so that the minimum number of numerical analyses can be used where the limit solution is not available.