• Title/Summary/Keyword: Ultraviolet lamp

Search Result 109, Processing Time 0.026 seconds

A Study of Aging Effect for Train Carbody Using Accelerated Aging Tester

  • Nam, Jeong-Pyo;LI, Qingfen;LI, Hong
    • International Journal of Railway
    • /
    • v.1 no.3
    • /
    • pp.113-116
    • /
    • 2008
  • The long-tenn exposure of polymeric composite materials to extreme-use environments, such as pressure, temperature, moisture, and load cycles, results in changes in the original properties of the material. In this study, the effect of combined environmental factors such as ultraviolet ray, high temperature and high moisture on mechanical and thermal analysis properties of glass fabric and phenolic composites are evaluated through a 2.5 KW accelerated environmental aging tester. The environmental factors such as temperature, moisture and ultraviolet ray applied of specimens. A xenon-arc lamp is utilized for ultraviolet light and exposure time of up to 3000 hours are applied. Several types of specimens - tensile, bending, and shear specimens that are warp direction and fill direction are used to investigate the effects of environmental factors on mechanical properties of the composites. Mechanical degradations for tensile, bending and shear properties are evaluated through a Universal Testing Machine (UTM). Also, storage shear modulus, loss shear modulus and tan a are measured as a function of exposure time through a Dynamic Mechanical Analyzer (DMA). From the experimental results, changes in material properties of glass fabric and phenolic composites are shown to be slightly degraded due to combined environmental effects.

  • PDF

Color Change of the Dyed Materials by Ultra-Violet and Visible Irradiation (자외선 및 가시광선에 의한 염색시료의 변퇴색)

  • 김홍범;한종성
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.13-18
    • /
    • 1995
  • To evaluate the color change of the dyed materials by ultraviolet and visible rays in the museum, a system that accelerates dye fading was developed. Radiation energy from a Xenon lamp is irradiated on the samples through the filters of defferent cut-on wavelengths. As a result, the color change as a function of the wavelength and irradiation is calculated.

  • PDF

Design and Fabrication of an Energy Saving LED-Fishing Lamp (에너지 절감형 LED 집어등의 설계 및 제작)

  • Choi, Sung-Kuk;Kim, Sun-Jae;Park, Dae-Won;Kil, Gyung-Suk;Choi, Chul-Young;Song, Sang-Bin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.515-521
    • /
    • 2010
  • This paper dealt with the design and fabrication of an energy saving light emitting diode (LED) fishing lamp. Most fishes such as a squid, horse mackerel, mackerel, sardine and scabbard fish have characteristics for phototaxis and fishing lamps have promoted the fishery efficiency using their photo-reaction. In these days, metal halide lamp (MHL) as the fishing lamp, which consumes 1.5 kW and radiates harmful ultraviolet rays are mainly used. To develop the LED-fishing lamp, the penetration depth in sea water and the photo-reaction of a squid as light wavelength were studied. The experimental results showed the both characteristics were existed in blue color around 470 nm. Based on the results, we manufactured a 160 W and blue LED-fishing lamp which is consume about one-nine of 1.5 kW MHL. As energy saving effect, the use of LED-fishing lamp can reduce 128 kWh per an hour which is correspond to $CO_2$ of 86 kg for a 22ton-fishing boat equipped with 80-1.5 kW MHL. Now, the prototype LED fishing lampsare being evaluated on two fishing boats.

Simulation Method for the Flowing Water Purification with UV Lamp (자외선램프을 이용한 유수처리장치 설계 시뮬레이션)

  • Jeong, Byeong-Ho;Lee, Kang-Yeon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.9
    • /
    • pp.17-23
    • /
    • 2009
  • Interest in application of ultraviolet light technology for primary disinfection of potable water in drinking water treatment plants has increased significantly in recent years. The efficacy of disinfection processes in water purification systems is governed by several key factors, including reactor hydraulics, disinfectant chemistry, and microbial inactivation kinetics. The objective of this work was to develop a computational fluid dynamics(CFD) model to predict velocity fields, mass transport, chlorine decay, and microbial inactivation in a continuous flow reactor. The CFD model was also used to evaluate disinfection efficiency in alternative reactor designs. In a typical operation, water enters the inlet of a UV lamp and flows through the annular space between the quartz sleeve and the outside chamber wall. The irradiated water leaves through the outlet nozzle. In this paper, it describe the how to design optimal ultraviolet disinfection device for ground water and rainwater. To search the optimal design method, it was performed computer simulation with 3D-CFD discrete ordinates model and manufactured prototype. Using proposed design method, performed simulation and proved satisfied performance.

Removal of Tetracycline Antibiotics Using UV and UV/H2O2 Systems in Water (UV 및 UV/H2O2 시스템을 이용한 수중의 Tetracycline계 항생물질 제거)

  • Son, Hee-Jong;Yoom, Hoon-Sik;Jang, Seong-Ho;Kim, Han-Soo;Hong, Soon-Heon;Park, Woo-Sik;Song, Young-Chae
    • Journal of Environmental Science International
    • /
    • v.23 no.7
    • /
    • pp.1359-1366
    • /
    • 2014
  • Seven tetracycline classes of antibiotics were treated using ultraviolet (UV) and $UV/H_2O_2$ oxidation. Two different UV lamps were used for the UV and $UV/H_2O_2$ oxidation. The performance of the UV oxidation was different depending on the lamp type. The medium pressure lamp showed better performance than the low pressure lamp. Combining the low pressure lamp with hydrogen peroxide ($H_2O_2$) improved the removal performance substantially. The by-products formation of tetracycline by UV and $UV/H_2O_2$ were investigated. The protonated form ($[1+H]^+$) of tetracycline was m/z 445, reacted to yield almost exclusively two oxidation by-products by UV and $UV/H_2O_2$ oxidation. Their protonated forms of by-products were m/z 461 and m/z 477. The structures of tetracycline's by-products in UV and $UV/H_2O_2$ system were similar.

Strain-free AlGaN/GaN Nanowires for UV Sensor Applications (Strain-free AlGaN/GaN 자외선 센서용 나노선 소자 연구)

  • Ahn, Jaehui;Kim, Jihyun
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.72-75
    • /
    • 2012
  • In our experiments, strain-free nanowires(NWs) were dispersed on to the substrate, followed by e-beam lithography(EBL) to fabricate single nanowire ultraviolet(UV) sensor devices. Focused-ion beam(FIB), micro-Raman spectroscopy and photoluminescence were employed to characterize the structural and optical properties of AlGaN/GaN NWs. Also, I-V characteristics were obtained under both dark condition and UV lamp to demonstrate AlGaN/GaN NW-based UV sensors. The conductance of a single AlGaN/GaN UV sensor was 9.0 ${\mu}S$(under dark condition) and 9.5 ${\mu}S$ (under UV lamp), respectively. The currents were enhanced by excess carriers under UV lamp. Fast saturation and decay time were demonstrated by the cycled processes between UV lamp and dark condition. Therefore, we believe that AlGaN/GaN NWs have a great potential for UV sensor applications.

Degradation of residual pharmaceuticals in water by UV/H2O2 advanced oxidation process (UV/H2O2 고도산화기술을 이용한 수중 잔류의약물질 제거)

  • Park, Chinyoung;Seo, Sangwon;Cho, Ikhwan;Jun, Yongsung;Ha, Hyunsup;Hwang, Tae-Mun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.6
    • /
    • pp.469-480
    • /
    • 2019
  • This study was conducted to evaluate the degradation and mineralization of PPCPs (Pharmaceuticals and Personal Care Products) using a CBD(Collimated Beam Device) of UV/H2O2 advanced oxidation process. The decomposition rate of each substance was regarded as the first reaction rate to the ultraviolet irradiation dose. The decomposition rate constants for PPCPs were determined by the concentration of hydrogen peroxide and ultraviolet irradiation intensity. If the decomposition rate constant is large, the PPCPs concentration decreases rapidly. According to the decomposition rate constant, chlortetracycline and sulfamethoxazole are expected to be sufficiently removed by UV irradiation only without the addition of hydrogen peroxide. In the case of carbamazepine, however, very high UV dose was required in the absence of hydrogen peroxide. Other PPCPs required an appropriate concentration of hydrogen peroxide and ultraviolet irradiation intensity. The UV dose required to remove 90% of each PPCPs using the degradation rate constant can be calculated according to the concentration of hydrogen peroxide in each sample. Using this reaction rate, the optimum UV dose and hydrogen peroxide concentration for achieving the target removal rate can be obtained by the target PPCPs and water properties. It can be a necessary data to establish design and operating conditions such as UV lamp type, quantity and hydrogen peroxide concentration depending on the residence time for the most economical operation.

Feasibility Study of UV Disinfection system of Small Wastewater System for Water Reclamation (용수 재이용을 위한 소규모 하수처리시설의 UV disinfection system)

  • Joung, Kwang-Wook;Yoon, Chun-Gyeong;Ham, Jong-Hwa
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.421-424
    • /
    • 2002
  • Deterministic and probabilistic approaches to the design of ultraviolet (UV) disinfection system for water reclamation are reviewed and discussed. The high inactivation of TC, FC and E. coli by UV disinfection was demonstrated and the inactivations of TC, FC and E. coli were 97%, 98% and 99%, respectively. Within the range of 0.3-4.5mWs/cm, the effect of UV does on the inactivation ratio was not observed. However, in the highest wattage of UV lamp, 39W, the inactivation ratio of TC, FC and E. coli was 100%, regardless of the UV does so the UV density was more effective on inactivation ratio of TC, FC and E. coli rather than UV does. Under the 0.4 mWs/cm and 16W of UV lamp, the effect of dissolved organic matter and turbidity on the inactivations of TC, FC and E. coli could not be observed in this study within the range of 0-60mg/L and 0-40 NTU respectively.

  • PDF

Development of the High Voltage Converter for the Pulsed Light Sterilization (광펄스 살균을 위한 다채널 고전압 컨버터의 개발)

  • Lee, Young-Woo;Kim, Hyung-Won;Choi, Woo-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.6
    • /
    • pp.29-37
    • /
    • 2012
  • As the demand for the fresh non-thermal food is increased, it is required to develop the fast and perfect sterilization method. The conventional sterilization method using ultraviolet lamp has some disadvantages such as imperfect sterilization and longer process time. In this research, IPL(Intense Pulsed Light) sterilization system is introduced to overcome the drawbacks of the conventional system, and suitable power supply architecture for the system is discussed. Since the IPL sterilization system uses Zenon lamps which requires the 600~2,100[V] for the lightning and 16~30[kV] for the trigger, the converter for the system should be able to generate the high voltage and to discharge the large amount of energy instantaneously. In this research a new power system architecture which has a modified forward converter topology with two switches for generating high voltage and a capacitor bank to control the energy for the lightning by switching is introduced.

Behavior of Natural Organic Matter(NOM), Chlorine Residual, and Disinfection By-Products(DBPs) Formation in Pulsed UV Treated Water (Pulsed UV 처리수에서의 자연유기물질, 잔류염소 및 소독부산물 생성 거동)

  • Sohn, Jinsik;Han, Jihee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.5
    • /
    • pp.685-692
    • /
    • 2012
  • UV technology is widely used in water and wastewater treatment. Many researches have been conducted on microbial disinfection and micro pollutant reduction with UV treatment. However, the study on NOM with UV has limited because low/medium pressure UV lamp is not sufficient to affect refractory organics such as NOM. Pulsed UV treatment using UV flash lamp can be operated in the pulsed mode with much greater peak intensity. The pulse duration is typically in microseconds, whereas the interval between pulses is in the order of milliseconds. The high intensity of pulsed UV would mineralize NOM itself as well as change the characteristics of NOM. Chlorine demand and DBPs formation is affected on the changed amounts and properties of NOM. The objective of this study is to investigate the effect on NOM, chlorine residual, and chlorinated DBPs formation with pulsed UV treatment.