DOI QR코드

DOI QR Code

UV 및 UV/H2O2 시스템을 이용한 수중의 Tetracycline계 항생물질 제거

Removal of Tetracycline Antibiotics Using UV and UV/H2O2 Systems in Water

  • 손희종 (부산광역시 상수도사업본부 수질연구소) ;
  • 염훈식 (부산광역시 상수도사업본부 수질연구소) ;
  • 장성호 (부산대학교 바이오환경에너지학과) ;
  • 김한수 (부산대학교 식품공학과) ;
  • 홍순헌 (부산대학교 토목공학과) ;
  • 박우식 (부산대학교 토목공학과) ;
  • 송영채 (한국해양대학교 환경공학과)
  • Son, Hee-Jong (Water Quality Institute, Busan Water Authority) ;
  • Yoom, Hoon-Sik (Water Quality Institute, Busan Water Authority) ;
  • Jang, Seong-Ho (Department of Bioenvironmental Energy, Pusan National University) ;
  • Kim, Han-Soo (Department of Food Science & Technology, Pusan National University) ;
  • Hong, Soon-Heon (Department of Civil Engineering, Pusan National University) ;
  • Park, Woo-Sik (Department of Civil Engineering, Pusan National University) ;
  • Song, Young-Chae (Department of Environmental Engineering, Korea Maritime and Ocean University)
  • 투고 : 2014.05.28
  • 심사 : 2014.07.14
  • 발행 : 2014.07.31

초록

Seven tetracycline classes of antibiotics were treated using ultraviolet (UV) and $UV/H_2O_2$ oxidation. Two different UV lamps were used for the UV and $UV/H_2O_2$ oxidation. The performance of the UV oxidation was different depending on the lamp type. The medium pressure lamp showed better performance than the low pressure lamp. Combining the low pressure lamp with hydrogen peroxide ($H_2O_2$) improved the removal performance substantially. The by-products formation of tetracycline by UV and $UV/H_2O_2$ were investigated. The protonated form ($[1+H]^+$) of tetracycline was m/z 445, reacted to yield almost exclusively two oxidation by-products by UV and $UV/H_2O_2$ oxidation. Their protonated forms of by-products were m/z 461 and m/z 477. The structures of tetracycline's by-products in UV and $UV/H_2O_2$ system were similar.

키워드

참고문헌

  1. Choi, K. J., Kim, S. G., Kim, C. W., Kim, S. H., 2007, Determination of antibiotic compounds in water by on-line, Chemosphere, 66, 977-984. https://doi.org/10.1016/j.chemosphere.2006.07.037
  2. Chopra, I., Roberts, M., 2001, Tetracycline antibiotics: mode of action, applications, molecular biology and epidemiology of bacterial resistance, Microbiol. Mol. Biol. Rev., 65, 232-233. https://doi.org/10.1128/MMBR.65.2.232-260.2001
  3. Daughton, C. G., Ternes, T. A., 1999, Pharmaceuticals and personal care products in the environment: agents of subtle change?, Environ. Health Perspect., 107, 907-942. https://doi.org/10.1289/ehp.99107s6907
  4. De la Cruz, N., Gimenez, J., Esplugas, S., Grandjean, D., de Alencastro, L. F., Pulgarin, C., 2012, Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge, Water Res., 46, 1947-1957. https://doi.org/10.1016/j.watres.2012.01.014
  5. Diaz-Cruz, M. S., de Alda, M. J. L., Barcelo, D., 2003, Environmental behavior and analysis of veterinary and human drug in soils, sediments and sludge, Trends Anal. Chem., 22, 340-351. https://doi.org/10.1016/S0165-9936(03)00603-4
  6. Hamscher, G., Sczesny, S., Hoper, H., Nau, H., 2002, Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry, Anal. Chem., 74, 1509-1518. https://doi.org/10.1021/ac015588m
  7. Halling-Sorensen, B., Nielson, S. N., Lanzky, P. E., Ingerslev, L. F., 1998, Occurrence, fate and effects of pharmaceutical substances in the environment-a review, Chemosphere, 36(2), 357-393. https://doi.org/10.1016/S0045-6535(97)00354-8
  8. Huber, M. M., Korhonen, S., Ternes, T. A., von Gunten, U., 2005, Oxidation of pharmaceuticals during water treatment with chlorine dioxide, Water Res., 39(15), 3607-3617. https://doi.org/10.1016/j.watres.2005.05.040
  9. Karthikeyan, K. G., Meyer, M. T., 2006, Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, U.S.A., Sci. Total Environ., 361, 196-207. https://doi.org/10.1016/j.scitotenv.2005.06.030
  10. Kim, I., Yamashita, N., Tanaka, H., 2009, Performance of UV and UV/$H_2O_2$ processes for the removal of pharmaceuticals detected in secondary effluent of a sewage treatment plant in Japan, J. Hazard. Mater., 166, 1134-1140. https://doi.org/10.1016/j.jhazmat.2008.12.020
  11. Kummerer, K., 2003, Significance of antibiotics in the environment, J. Antimicrobial Chemotherapy, 52, 5-7. https://doi.org/10.1093/jac/dkg293
  12. Li, K., Yediler, A., Yang, M., Schulte-Hostede, S., Wong, M. H., 2008, Ozonation of oxytetracycline and toxicological assessment of its oxidation by-products, Chemosphere, 72, 473-478. https://doi.org/10.1016/j.chemosphere.2008.02.008
  13. Pereira, V. J., Linden, K. G., Weinberg, H. S., 2007, Evaluation of UV irradiation for photolytic and oxidative degradation of pharmaceutical compounds in water, Water Res., 41, 4413-4423. https://doi.org/10.1016/j.watres.2007.05.056
  14. Rizzo, L., Fiorentino, A., Anselmo, A., 2013, Advanced treatment of urban wastewater by UV radiation: effect on antibiotics and antibiotic-resistant E. coli strains, Chemosphere, 92, 171-176. https://doi.org/10.1016/j.chemosphere.2013.03.021
  15. Rooklidge, S. J., 2004, Environmental antimicrobial contamination from terraccumulation and diffuse pollution pathways, Sci. Total Environ., 325, 1-13. https://doi.org/10.1016/j.scitotenv.2003.11.007
  16. Son, H. J., Jang, S. H., 2011, Occurrence and residual pharmaceuticals and fate, residue and toxic effect in drinking water resources, J. Kor. Soc. Environ. Eng., 33(6), 453-479. https://doi.org/10.4491/KSEE.2011.33.6.453
  17. Son, H. J., Yeom, H. S., Jung, J. M., Jang, S. H., 2013, Application of on-line SPE-LC/MSD to measure perfluorinated compounds (PFCs) in water, J. Kor. Soc. Environ. Eng., 35(2), 75-83. https://doi.org/10.4491/KSEE.2013.35.2.075
  18. Stumpf, M., Ternes, T. A., Wilken, R. D., Rodrigues, S. V., Baumann, W., 1999, Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil, Sci. Total Environ., 225, 135-141. https://doi.org/10.1016/S0048-9697(98)00339-8
  19. Wang, J. L., Xu, L. J., 2012, Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application, Crit. Rev. Environ. Sci. Technol., 42, 251-325. https://doi.org/10.1080/10643389.2010.507698
  20. Westerhoff, P., Yoon, Y., Snyder, S., Wert, E., 2005, Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes, Environ. Sci. Technol., 39, 6649-6663. https://doi.org/10.1021/es0484799
  21. Yang, S. H., Carlson, K., 2003, Evaluation of antibiotic occurrence in a river through pristine, urban and agricultural landscapes, Water Res., 37, 4645-4646. https://doi.org/10.1016/S0043-1354(03)00399-3
  22. Zuccato, E., Calamari, D., Natangelo, M., Fanelli, R., 2000, Presence of therapeutic drugs in the environment, Lancet, 355, 1789-1790. https://doi.org/10.1016/S0140-6736(00)02270-4
  23. Zuorro, A., Fidaleo, M., Fidaleo, M., Lavecchia, R., 2014, Degradation and antibiotic activity reduction of chloramphenicol in aqueous solution by UV/$H_2O_2$ process, J. Environ. Manage., 133, 302-308. https://doi.org/10.1016/j.jenvman.2013.12.012