• Title/Summary/Keyword: Ultraviolet intensity

Search Result 196, Processing Time 0.028 seconds

Anti-Pigmentation Effects of Eight Phellinus linteus-Fermented Traditional Crude Herbal Extracts on Brown Guinea Pigs of Ultraviolet B-Induced Hyperpigmentation

  • Ahn, Hee-Young;Choo, Young-Moo;Cho, Young-Su
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.3
    • /
    • pp.375-380
    • /
    • 2018
  • We have previously found that mycelia culture broth of eight kinds of traditional herbal extracts fermented with Phellinus linteus (previously named as 8-HsPLCB) not only inhibited melanin and tyrosinase activity, but also reduced the contents of melanogenesis-related proteins, including tyrosinase and microphthalmia-associated transcription factor, in 3-isobutyl-1-methylxanthine-stimulated B16F0 melanoma cells. For a further study, the effect of 8-HsPLCB against skin pigmentation in brown guinea pigs with ultraviolet B (UVB)-induced hyperpigmentation was investigated. 8-HsPLCB (3%) and arbutin (2%) as positive controls were applied topically twice daily for 4 weeks to the hyperpigmented areas. 8-HsPLCB showed skin-lightening effect as effective as arbutin, one of the most widely used in whitening cosmetics. Melanin index values as the degree of pigmentation showed a significant reduction week by week post 8-HsPLCB treatment and then substantially reduced by 4 weeks. The degree of depigmentation after 4 weeks of topical application with 8-HsPLCB was 32.2% as compared with before treatment (0 week). Moreover, using Fontana-Masson staining and hematoxylin-eosin staining, 8-HsPLCB reduced melanin pigmentation in the basal layer of the epidermis and epidermal thickness changes exposed to the UV-B irradiation as compared with non-treatment and vehicle treatment. The intensity of the skin-lightening effect of 8-HsPLCB was similar to arbutin. These results suggest that the skin-lightening effect of 8-HsPLCB might be resulted from inhibition of melanin synthesis by tyrosinase in melanocytes. To conclude, 8-HsPLCB treatment showed reduction of the melanin pigment and histological changes induced by UV irradiation in brown guinea pigs.

Influence of gas mixture He-Ne-Xe on the vacuum ultraviolet intensity in ac-PDPs.

  • Yoo, N.L.;Jung, K.B.;Lee, J.H.;Lee, S.B.;Han, Y.K.;Jeong, S.H.;Lee, H.J.;Son, C.G.;Lim, J.E.;Oh, P.Y.;Moon, M.W.;Jeoung, J.M.;Ko, B.D.;Cho, G.S.;Uhm, H.S.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1221-1224
    • /
    • 2005
  • The improvement of luminance and luminous efficiency is the one of the most important parts in AC-PDPs. To achieve high luminance and luminous efficiency, high VUV emission efficiency is needed. We measured the emission spectra of the vacuum ultraviolet(VUV) rays in surface discharge AC-PDP with ternary gas mixture of He-Ne-Xe. The influence of He-Ne-Xe gas-mixture ratio on excited $Xe^{\ast}$ resonant atoms and $Xe_2\;^{\ast}$ dimers has been investigated. It is found that luminous efficiency of ternary gas mixture, He-Ne-Xe, is shown to be much higher than that of binary gas mixture of Ne-Xe. For improving discharge luminous efficiency, we have studied VUV emission characteristics of ternary gas mixture, He(50%)-Ne-Xe and He(70%)-Ne-Xe with Xe concentration and filling gas pressure.

  • PDF

The influence of Ne-Xe gas mixture ratio on vacuum Ultraviolet and infrared line in AC-PDP

  • Oh, Phil-Y.;Cho, I.R.;Jung, Y.;Park, K.D.;Ahn, J.C.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.743-747
    • /
    • 2003
  • The improvement of luminance and luminous efficiency is the one of the most important part in AC-PDPs. To achieve high luminance and luminous efficiency, high VUV emission efficiency is needed. We measured the emission spectra of vacuum ultraviolet(VUV) and infrared(IR) rays in surface discharge AC-PDP with Ne-Xe mixture gas. The influence of Ne-Xe gas-mixture ratio on resonance state $Xe^{\ast}(3P_{1})$ and exited state $Xe^{\ast}(3P_{2})$ has been investigated. It is found that the intensity of VUV 147nm emission is proportional to that of the IR 828 nm emission, and the VUV 173nm emission is roughly proportional to that of the IR 823nm emission. The electron temperature and plasma density have been experimentally measured from the center of sustaining electrode gap by a micro Langmuir probe in AC-PDPs. The plasma density from the center of sustaining electrode gap are shown to be maximum value of $9{\times}10^{11}cm^{-3}$, where the electron temperature is about 1.6 eV in this experiment

  • PDF

The Level of UVB-induced DNA Damage and Chemoprevention Effect of Paeoniflorin in Normal Human Epidermal Kerationcytes

  • Lim, Jun-Man;Park, Mun-Eok;Lee, Sang-Hwa;Kang, Sang-Jin;Cho, Wan-Goo;Rang, Moon-Jeong
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.2
    • /
    • pp.111-115
    • /
    • 2005
  • Ultraviolet (UV) radiation to mammalian skin is known to alter cellular function via generation of Reactive Oxygen Species (ROS), DNA damage and DNA lesions, such as pyrimidine dimmers and photoproducts, which could lead to DNA mutation if they are not repaired. In this study, we have investigated the reduction of DNA damage and of apoptosis with a particular attention to genetic effect of paeoniflorin in Normal Human Epidermal Keratinocytes (NHEK). After UVB irradiation from $10\;to\;500mJ/cm^{2}$ to NHEK, Mean Tail Moments (MTM) were increased with UVB dose increase. The greatest amount of strand breaks was induced at $500mJ/cm^{2}$ of UVB. Even at the lowest dose of UVB ($10mJ/cm^{2}$), change in MTM was detected (P<0.0001). Pretreated cell with 0.1% paeoniflorin maximally reduced the level of DNA damage to about 21.3%, compared to untreated cell. In the lower concentrations less than 0.01% of paeoniflorin, MTM had a small increase but paeoniflorin still had reductive effects of DNA damage. We measured the apoptosis suppression of paeoniflorin with annexin V flous staining kit. As we observed under the fluorescence microscopy to detect apoptosis in the irradiated cell, the fluorescence intensity was clearly increased in the untreated cell, but decreased in treated cells with paeoniflorin. These results suggest that paeoniflorin reduces the alteration of cell membranes and prevents DNA damage. Therefore, the use of paeoniflorin as a free radical scavenger to reduce the harmful effects of UV lights such as chronic skin damage, wrinkling and skin cancer can be useful to prevent the formation of photooxidants that result in radical damage.

Photosynthetic Response and Protective Regulation To Ultraviolet-B Radiation In Green Pepper (Capsicum annuum L.)Leaves

  • Kim, Dae-Whan;Jun, Sung-Soo;Hong, Young-Nam
    • Journal of Photoscience
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • The deteriorative effect of ultraviolet-B(UV-B) radiation on photosynthesis was assessed by the simultaneous measurement of O$_2$ evolution and chlorophyll(Chl) fluorescence in green pepper. UV-B was given at the intensity of 1 W$.$m$\^$-2/, a dosage often encountered in urban area of Seoul in Korea, to detached leaves. Both Pmax and quantum yield of O$_2$ evolution was rapidly decreased, in a parallel phase, with increasing time of UV-B treatment. Chl fluorescence parameters were also significantly affected. Fo was increased while both Fm and Fv were decreased. Photochemical efficiency of PSII(Fv/Fm) was also declined, although to a lesser extent than Pmax. Both qP and NPQ were decreased similarly with increasing time of UV-B treatment. However, PS I remained stable. The addition of lincomycin prior to UV-B treatment accelerated the decline in Fv/Fm to some extent, suggesting that D1 protein turnover may play a role in overcoming the harmful effect of UV-B. The amount of photosynthetic pigments was less affected than photosynthetic response in showing decline in Chl a and carotenoids after 24 h-treatment. Presumptive flavonoid contents, measured by changes in absorbance at 270 nm , 300 nm and 330nm, were all increased by roughly 50% after 8 h-treatment. Among antioxidant enzymes, activities of catalase and peroxidase were steadily increased until 12h of UV-B treatment whereas ascorbate perxidase, dehydroascorvate reductase and glutathione reductase did not show any significant change. The results indicate that deteriorative effect of UV-B on photosynthesis precedes the protection exerted by pigment synthesis and antioxidant enzymes.

  • PDF

Emission Plasma Spectroscopy of High-pressure Microdischarges

  • Lee, Byeong-Jun;Ju, Yeong-Do;Kim, Seung-Hwan;Ha, Tae-Gyun;Gong, Hyeong-Seop;Park, Yong-Jeong;Park, Jong-Do;Nam, Sang-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.253.2-253.2
    • /
    • 2014
  • Micro hollow cathode discharges (MHCDs) are high-pressure, non-equilibrium discharges. Those MHCDs are useful to produce an excimer radiation. A major advantage of excimer sources is their high internal efficiency which may reach values up to 40% when operated under optimum conditions. To produce strong excimer radiation, the optimisation of the discharge conditions however needs a detailed knowledge of the properties of the discharge plasma itself. The electron density and temperature influence the excitation as well as plasma chemistry reactions and the gas temperature plays a major role as a significant energy loss process limiting efficiency of excimer radiation. Most of the recent spectroscopic investigations are focusing on the ultraviolet or vacuum ultraviolet range for direct detection of the excimer. In our experiments we have concentrated on investigating the micro hollow cathodes from the near UV to the near infrared (300~850 nm) to measure the basic plasma parameters using standard plasma diagnostic techniques such as stark broadening for electron density and the relative line intensity method for electron temperature. Finally, the neutral gas temperature was measured by means of the vibrational rotational structures of the second positive system of nitrogen.

  • PDF

Anti-wrinkling effects of "L-Skin Care" and molecular mechanisms on hairless mouse skin caused by chronic ultraviolet B irradiation.

  • Cho, Ho-Song
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2007.11a
    • /
    • pp.153-158
    • /
    • 2007
  • Background: Naturally occurring antioxidants were used to regulate the skin damage caused by ultraviolet (UV) radiation because several antioxidants have demonstrated that they can inhibit wrinkle formation through prevention of matrix metalloproteinases (MMPs) and/or increase of collagen synthesis. We examined the effect of oral administration of the antioxidant mixture ("L-Skin Care") on UVB-induced wrinkle formation. In addition, we investigated the possible molecular mechanisms of photoprotection against UVB through inhibition of collagen-degrading MMP activity or through enhancing of pro collagen synthesis in mouse dorsal skin. Methods: Female SKH-l hairless mice were orally administrated "L-Skin Care" (test group) or vehicle (control group) for 10 weeks with UVB irradiation by three times a week. The intensity of irradiation was gradually increased from 30 to $180mJ/cm^2$. Microtopographic and histological assessments of the dorsal skins were carried out at the end of 10 weeks to evaluate wrinkle formation. Western blot analysis and EMSA were also carried out to investigate the changes in the balance of collagen synthesis and collagen degradation. Results: Our "L-Skin Care" significantly reduced UVB-induced wrinkle formation, accompanied by significant reduction of epidermal thickness, and UVB-induced hyperplasia, acanthosis and hyperkeratosis. Oral administration of "L-Skin Care" significantly prevented UVB-induced expressions of MMPs, mitogen-activated protein (MAP) kinases and activation of activator protein (AP)-1 transcriptional factor in addition to enhanced type I procollagen and transforming growth factor-$\beta$ (TGF-$\beta$) expression. Conclusion: Oral administration of "L-Skin Care" significantly inhibited wrinkle formation caused by chronic UVB irradiation through significant inhibition of UVB-induced MMP activity accompanied with enhancement of collagen synthesis.

  • PDF

Fabrication and performance evaluation of ultraviolet photodetector based on organic /inorganic heterojunction

  • Abdel-Khalek, H.;El-Samahi, M.I.;Salam, Mohamed Abd-El;El-Mahalawy, Ahmed M.
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1496-1506
    • /
    • 2018
  • Organic/inorganic ultraviolet photodetector was fabricated using thermal evaporation technique. Organic/inorganic heterojunction based on thermally evaporated copper (II) acetylacetonate thin film of thickness 200 nm deposited on an n-type silicon substrate is introduced. I-V characteristics of the fabricated heterojunction were investigated under UV illumination of intensity $65mW/cm^2$. The diode parameters such as ideality factor, n, barrier height, ${\Phi}_B$, and reverse saturation current, $I_s$, were determined using thermionic emission theory. The series resistance of the fabricated diode was determined using modified Nord's method. The estimated values of series resistance and barrier height of the diode were about $0.33K{\Omega}$ and 0.72 eV, respectively. The fabricated photodetector exhibited a responsivity and specific detectivity about 9 mA/W and $4.6{\times}10^9$ Jones, respectively. The response behavior of the fabricated photodetector was analyzed through ON-OFF switching behavior. The estimated values of rise and fall time of the present architecture under UV illumination were about 199 ms and 154 ms, respectively. Finally, enhancing the photoresponsivity of the fabricated photodetector, post-deposition plasma treatment process was employed. A remarkable modification of the device performance was noticed as a result of plasma treatment. These modifications are representative in a decrease of series resistance and an increase of photoresponsivity and specific detectivity. The process of plasma treatment achieved an increment of external quantum efficiency from 5.53% to 8.34% at -3.5 V under UV illumination.

Effect of Deposition Temperature on the Optical Properties of La2MoO6:Dy3+,Eu3+ Phosphor Thin Films (증착 온도에 따른 La2MoO6:Dy3+,Eu3+ 형광체 박막의 광학 특성)

  • Cho, Shinho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.387-392
    • /
    • 2019
  • $Dy^{3+}$ and $Eu^{3+}$-co-doped $La_2MoO_6$ phosphor thin films were deposited on sapphire substrates by radio-frequency magnetron sputtering at various growth temperatures. The phosphor thin films were characterized using X-ray diffraction (XRD), scanning electron microscopy, ultraviolet-visible spectroscopy, and fluorescence spectrometry. The optical transmittance, absorbance, bandgap, and photoluminescence intensity of the $La_2MoO_6$ phosphor thin films were found to depend on the growth temperature. The XRD patterns demonstrated that all the phosphor thin films, irrespective of growth temperatures, had a tetragonal structure. The phosphor thin film deposited at a growth temperature of $100^{\circ}C$ indicated an average transmittance of 85.3% in the 400~1,100 nm wavelength range and a bandgap energy of 4.31 eV. As the growth temperature increased, the bandgap energy gradually decreased. The emission spectra under ultraviolet excitation at 268 nm exhibited an intense red emission line at 616 nm and a weak emission line at 699 nm due to the $^5D_0{\rightarrow}^7F_2$ and $^5D_0{\rightarrow}^7F_4$ transitions of the $Eu^{3+}$ ions, respectively, and also featured a yellow emission band at 573 nm, resulting from the $^4F_{9/2}{\rightarrow}^6H_{13/2}$ transition of the $Dy^{3+}$ ions. The results suggest that $La_2MoO_6$ phosphor thin films can be used as light-emitting layers for inorganic thin film electroluminescent devices.

Estimation of the SARS-CoV-2 Virus Inactivation Time Using Spectral Ultraviolet Radiation (파장별 지표 자외선 복사량을 이용한 SARS-CoV-2 바이러스 비활성화 시간 추정 연구)

  • Park, Sun Ju;Lee, Yun Gon;Park, Sang Seo
    • Atmosphere
    • /
    • v.32 no.1
    • /
    • pp.51-60
    • /
    • 2022
  • Corona Virus Disease 19 pandemic (COVID-19) causes many deaths worldwide, and has enormous impacts on society and economy. The COVID-19 was caused by a new type of coronavirus (Severe Acute Respiratory Syndrome Cornonavirus 2; SARS-CoV-2), which has been found that these viruses can be effectively inactivated by ultraviolet (UV) radiation of 290~315 nm. In this study, 90% inactivation time of the SARS-CoV-2 virus was analyzed using ground observation data from Brewer spectrophotometer at Yonsei University, Seoul and simulation data from UVSPEC for the period of 2015~2017 and 2020. Based on 12:00-13:00 noon time, the shortest virus inactivation time were estimated as 13.5 minutes in June and 4.8 minutes in July/August, respectively, under all sky and clear sky conditions. In the diurnal and seasonal variations, SARS-CoV-2 could be inactivated by 90% when exposed to UV radiation within 60 minutes from 10:00 to 14:00, for the period of spring to autumn. However, in winter season, the natural prevention effect was meaningless because the intensity of UV radiation weakened, and the time required for virus inactivation increased. The spread of infectious diseases such as COVID-19 is related to various and complex interactions of several variables, but the natural inactivation of viruses by UV radiation presented in this study, especially seasonal differences, need to be considered as major variables.