• Title/Summary/Keyword: Ultraviolet curable coating solution

Search Result 3, Processing Time 0.017 seconds

Preparation of UV curable coating solution from multi functional acrylates and characterization of optical properties of coated layer on PET film (다관능 아크릴레이트계 자외선 경화형 코팅액의 제조 및 이를 이용한 PET 필름 도막의 광학 특성 연구)

  • Lee, Soo;Jin, Seok-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.467-472
    • /
    • 2009
  • Ultraviolet curable coating solution was prepared with poly(ethylene glycol) acrylate oligomer and various mono and multi-functional acrylate monomers. The optical properties of UV cured coating layer on PET film with acrylate coating solution containing metal oxides, such as fumed silica and alumina, were also investigated to reduce light reflection on films. Poly(ethylene glycol) diacrylate which has 575 of average molecular weight was used as oligomer acrylate, and pentaerythritol triacrylate and dipentaerythritolpenta-/hexa acrylate were used as multi-functional acrylate monomers. Also, butyl acrylate was used to improve the adhesion as well as to reduce glass transition temperature to give a better flexability. 1-hydroxy cyclohexyl phenyl ketone was used as photoinitiator. We found out the metal oxides in acrylate coating solution showed a homogeneous dispersion from energy dispersive spectroscopy data. Transmittance and light reflection of coated PET film was measured with UV/vis spectrometer and gloss meter, respectively. When 1.00 g of both metal oxides was added into coating solution, the transmittance and the glossiness were reduced from 90% to 30% and from 190 GU to 35 GU, respectively. However, adding up to 1.00 g of the metal oxide into coating solution did not affect on the hardness of coating layer and adhesion between coated layer and PET film. Conclusively, we can control transmittance and light reflection of coated film by adjusting the amounts of metal oxide in coating solution.

Preparation of UV-curable Ozone Resistance Coating Solutions using Fluoromonomer (불소 단량체를 이용한 자외선 경화형 내 오존성 코팅 막 제조)

  • Lee, Chang Ho;Lee, Sang Goo;Kim, Sung Rae;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.421-426
    • /
    • 2012
  • The effect of synthesis conditions such as various organic material and composition of organic-inorganic material in ozone resistance and surface characteristic of ultraviolet cured organic-inorganic hybrid coating film has been investigated. Organic-inorganic hybrid coating solution was prepared using tetraethoxysilane (TEOS), silane coupling agent methacryloyloxypropyltrimethoxysilane (MPTMS), 2,2,2-trifluoroethylmethacrylate, and various organic materials with acrylate group, bar-coated on substrates using applicator and densified by UV-curing. It was found that ozone resistance and surface hardness of the coating film was increased with contents of TEOS. It was also found that ozone resistance of coating film was increased with contents of 2,2,2-trifluoroethylmethacrylate. On the other hand, surface hardness was decreased with increase of 2,2,2-trifluoroethylmethacrylate. In addition, Surface hardness of coating film was increased with the addition of aliphatic urethane acrylate. It was also found that the transmittance of coating films was not influenced by content of TEOS and 2,2,2-trifluoroethylmethacrylate. In addition, the coating film exhibited high transmittance of above 90%.

Preparation and Characterization of Hybrid Ozone Resistance Coating Film Using Carbon Nanotube (탄소나노튜브를 이용한 하이브리드 내오존성 코팅 막의 제조 및 특성)

  • Kim, Sung Rae;Lee, Sang Goo;Yang, Jeong Min;Lee, Jong Dae
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.573-579
    • /
    • 2014
  • The effect of synthesis conditions such as carbon nanotube (CNT), 2,2,2-trifluoroethylmethacrylate (3FMA), and composition of organic-inorganic material in ozone resistance and surface characteristics of ultraviolet cured organic-inorganic hybrid coating film has been investigated. Coating solution was prepared using tetraethoxysilane (TEOS), silane coupling agent methacryloyloxypropyltrimethoxysilane (MPTMS), 3FMA, various organic materials with acrylate group, and CNT, then bar-coated on substrates using applicator, and densified by UV-curing. It was found that ozone resistance and adhesion of the coating film were strongly dependent upon contents of TEOS, 3FMA, and CNT. Especially, ozone resistance, adhesion, and surface hardness of coating film with CNT were improved, relatively. Ozone resistance of coating film with a high TEOS content was increased, but adhesion was decreased. In addition, it was also found that ozone resistance of coating film was increased with contents of 3FMA. On the other hand, surface hardness was decreased with increase of 3FMA.