• Title/Summary/Keyword: Ultraviolet Irradiation

Search Result 542, Processing Time 0.031 seconds

Disinfection Effect of Film Cassettes by Ultraviolet Irradiation (자외선을 이용한 Film Cassette의 소독 효과)

  • Kweon, Dae-Cheol;Park, Peom
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.4
    • /
    • pp.425-432
    • /
    • 2001
  • A bacteria infection on film cassette contact surface was examined at the diagnostic radiology department. Studies have demonstrated a bactericidal effect of ultraviolet irradiation, and to assess the contamination level on film cassette contact surface as a predictor of patient prevent from nosocomial infection. The study showed that the laboratory result was identified non-pathologic and pathologic bacterial in the five different cassette size of the contact surface. Film cassettes were exposed to ultraviolet light for 1, 2 and 3 minutes. Ultraviolet light disinfection practices suitable for bacteria. The study concludes that presence of a bacterial infection will prevent a using antiseptic technique on film cassette contact surface. In conclusion, ultraviolet irradiate on film cassette over the surface more than 2 minutes. Ultraviolet dose of $1565 {\mu}W{\codt}s/cm^2$ Win in 30 second relative to ultraviolet dose in time.

  • PDF

Synchronized Expression of Two Bombyx mori Caspase Family Genes, ice-2 and ice-5 in Cells Induced by Ultraviolet Irradiation

  • Wang, Wenbing;Sun, Ying;Song, Lina;Wu, Yan;Wu, Huiling
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.17 no.1
    • /
    • pp.121-124
    • /
    • 2008
  • The caspase family proteins play an important role in programmed cell death (apoptosis). To date, the expression profiles of the caspase family genes in Bombyx mori (Bm) are poorly known. In this study, we examined the expression profiles of two novel Bm caspase family genes (ice-2 and ice-5), the potential change of the mitochondrial membrane and the morphology in Bm cells after stimulation of ultraviolet (UV) irradiation. The results showed the potential change of the mitochondrial membrane occurred at 5 hours after UV irradiation treatment. Analysis of fluorescent quantitative RT-PCR demonstrated that both the ice-2 and ice-5 might be involved in UV induced apoptosis in Bm cells. Notably, after UV irradiating, expression pattern of ice-2 and ice-5 were remarkably different. The ice-2 gene was highly expressed at two time points, 0.5 and 5 hours after UV stimulating, while the expression level of ice-5 only peaked at 5 hours after UV stimulating. It indicated that apoptosis induced by UV irradiation was involved in the mitochondrial pathway and the two isoforms of Bm ice may act but play different role during the apoptosis of Bm cells.

Effect of Ultraviolet Irradiation on Molecular Properties of Ovalbumin (자외선 조사가 Ovalbumin의 분자적 성질에 미치는 영향)

  • Cho, Yong-Sik;Song, Kyung-Bin;Yamada, Koji;Han, Gui-Jung
    • Applied Biological Chemistry
    • /
    • v.51 no.4
    • /
    • pp.276-280
    • /
    • 2008
  • To elucidate the effects of ultraviolet (UV) irradiation on molecular properties of ovalbumin, the molecular weight profile, secondary structure and tertiary structure of proteins were examined after irradiation by UV with 254 nm wavelength for 4, 8, 16 and 32 hrs, respectively. UV irradiation of protein solution caused the disruption on the native state of protein molecules. SDS-PAGE and gel permeation chromatography indicated that radiation caused initial fragmentation of polypeptide chains and as a result subsequent aggregation due to cross-linking of protein molecules. Circular dichroism (CD) study showed that UV irradiation caused the change on the secondary structure resulting in decrease of helical structure or compact denature on structure of protein depending on irradiation period. Fluorescence spectroscopy indicated that irradiation quenched the emission intensity excited at 280 nm. These results suggest that UV irradiation affect the molecular properties of ovalbumin and may have potential as a means to change the antigenicity of protein allergen.

Synthesis of Zinc Oxide Nanoparticle-(C60) Fullerene Nanowhisker Composite for Catalytic Degradation of Methyl Orange under Ultraviolet and Ultrasonic Irradiation

  • Ko, Jeong Won;Son, Yeon-A;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.321-328
    • /
    • 2020
  • Zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and sodium hydroxide (NaOH) were dissolved in distilled water and stirred for 30 min. The resulting solution was sonicated by an ultrasonic wave for 45 min. This solution was washed with distilled water and ethanol after centrifugation; next, it was placed in an electric furnace at 200℃ for 1 h under the flow of Ar gas to obtain zinc oxide nanoparticle. A zinc oxide nanoparticle-(C60) fullerene nanowhisker composite was synthesized using the zinc oxide nanoparticle solution, C60-saturated toluene, and isopropyl alcohol via the liquid-liquid interfacial precipitation method. The zinc oxide nanoparticle and zinc oxide nanoparticle-(C60) fullerene nanowhisker composite were characterized using X-ray diffraction, scanning electron microscopy, and Raman spectroscopy, and they were used for the catalytic degradation of methyl orange (MO) under ultraviolet (at 254 and 365 nm) and ultrasonic irradiation. In addition, the catalytic degradation of MO over the zinc oxide nanoparticle and zinc oxide nanoparticle-(C60) fullerene nanowhisker composite was evaluated using ultraviolet-visible spectroscopy.

Effects of U.V. Irradiation on the Physical Properties of Fabrics Treated with Eco-friendly Persimmon Juice -Silk and Nylon Fabrics- (친환경 감물가공 소재의 자외선 조사에 의한 물리적 특성변화에 대한 연구 -견 및 나일론 직물-)

  • Kim, Jimin;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.19 no.4
    • /
    • pp.120-134
    • /
    • 2015
  • This study aimed to determine the physical properties of silk and nylon fabrics that are treated with persimmon juice in accordance with irradiation time of ultraviolet spectrum. Persimmon juice dyeing has the advantage of using the tannin component of the persimmon. Tannin plays an important role in inhibiting photodegradation of fibers or polymers. Among fibrous materials, silk and nylon are prone to deterioration by light. Hence, this study aimed to reduce these weaknesses of silk and nylon by applying persimmon juice treatment. We accordingly carried out investigation and experiments on ultraviolet irradiation, and physical characteristics of treated fabrics. The persimmon juice treatment process led to increased weight and thickness. In addition, the air permeability of silk fabric was increased, as compared to the control specimen; whereas, that of nylon fabric was decreased. Both drape stiffness and flex stiffness of silk and nylon tended to be high in textiles processed with persimmon juice treatment, as compared to the control textile. Peak load and elongation at peak load of untreated samples clearly decreased in both silk and nylon fabrics with the increase of ultraviolet irradiation time, while those of persimmon juice treated samples increased. Furthermore, ultraviolet blocking ratio measurement indicated that the fabric specimens treated with persimmon juice blocked U.V. spectrum better than the control specimen.

EFFECT OF ULTRAVIOLET RADIATION ON THE ORAL MUCOSA OF THE RATS (자외선 조사가 백서구강점막에 미치는 영향에 관한 실험적 연구)

  • Yoo, Kwang-Kil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.15 no.1
    • /
    • pp.26-33
    • /
    • 1977
  • Present study investigated the effect of Nuva-Lite irradiation on the labial oral mucosa of the albino rats. The specimens were embedded in paraffin wax and stained with histological and histochemical procedures such as hematoxylin-eosin stain, Feulgen reaction, methyl green-pyronin stain, alloxan Schiff reaction, -SH group reaction, PAS reaction, colloidal iron reaction and toluidine blue stain. The specimens 24 hours to 3 days after ultraviolet irradiation exhibited mild intracellular edema in the prickle cell layer. On 6th and 10th day after irradiation rete peg hyperplasia was prominent. Ultraviolet irradiation caused diminution of Feulgen reacted DNA. However, sulfhydril and ${\alpha}$-amino acid radicals were increased at the upper layer of stratified squamous epithelium after irradiation.

  • PDF

The Change of ATPase-positive Dendritic Cell and the Effect of Green Tea in Mouse Skin by Ultraviolet B Irradiation (자외선 B 조사에 의한 마우스 피부 ATPase 양성 가지세포의 변화 및 녹차투여의 효과)

  • Kim Sung-Ho;Kim Se-Ra;Lee Hae-June;Lee Jin-Hee;Kim Yu-Jin;Kim Jong-Choon;Jang Jong-Sik;Jo Sung-Kee
    • Toxicological Research
    • /
    • v.20 no.4
    • /
    • pp.315-320
    • /
    • 2004
  • In this study we assessed the influences of ultraviolet (UV) light B radiation on epidermal ATPase-positive dendritic cell (DC) and the effect of green tea treatment in ICR mouse. The extent of changes following 200 mJ/$cm^2$ (0.5 mW/sec) was studied at 0, 6, 12, 18, 24, 30 or 36 hours after exposure. SBCs were decreased by 6 hours after irradiation. There was tendency to decrease from 6 hours to 24 hours and had little further change from then to 36 hours after irradiation. The mice that received 0, 50, 100, 200, 300 or 400 mJ/$cm^2$ of UVB were examined 24 hours after irradiation. The DCs were decreased as the radiation dose increases from 100 to 400 mJ/$cm^2$. The frequency of UVB (200 mJ/$cm^2$)-induced DC decrease was reduced by treatment of green tea (i.p. and topical application, p<0.01).

A Review of the Efficacy of Ultraviolet C Irradiation for Decontamination of Pathogenic and Spoilage Microorganisms in Fruit Juices

  • Ahmad Rois Mansur;Hyun Sung Lee;Chang Joo Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.419-429
    • /
    • 2023
  • Ultraviolet C (UV-C, 200-280 nm) light has germicidal properties that inactivate a wide range of pathogenic and spoilage microorganisms. UV-C has been extensively studied as an alternative to thermal decontamination of fruit juices. Recent studies suggest that the efficacy of UV-C irradiation in reducing microorganisms in fruit juices is greatly dependent on the characteristics of the target microorganisms, juice matrices, and parameters of the UV-C treatment procedure, such as equipment and processing. Based on evidence from recent studies, this review describes how the characteristics of target microorganisms (e.g., type of microorganism/strain, acid adaptation, physiological states, single/composite inoculum, spore, etc.) and fruit juice matrices (e.g., UV absorbance, UV transmittance, turbidity, soluble solid content, pH, color, etc.) affect the efficacy of UV-C. We also discuss the influences on UV-C treatment efficacy of parameters, including UV-C light source, reactor conditions (e.g., continuous/batch, size, thickness, volume, diameter, outer case, configuration/arrangement), pumping/flow system conditions (e.g., sample flow rate and pattern, sample residence time, number of cycles), homogenization conditions (e.g., continuous flow/recirculation, stirring, mixing), and cleaning capability of the reactor. The collective facts indicate the immense potential of UV-C irradiation in the fruit juice industry. Existing drawbacks need to be addressed in future studies before the technique is applicable at the industrial scale.

Evaluation on Physical and Mechanical Properties of Wood Plastic Composites Treated under Ultraviolet Irradiation (자외선을 처리한 목재 플라스틱 복합재의 물리 및 역학적 성질 평가)

  • Lee, Jong-Shin;Kim, Soung-Joon
    • Journal of the Korea Furniture Society
    • /
    • v.26 no.4
    • /
    • pp.428-434
    • /
    • 2015
  • In this study, we received each wood plastic composites (WPC) from three manufacturers. These WPCs were evaluated regarding their physical and mechanical properties of both before and after accelerated weathering by ultraviolet (UV) irradiation. The total time of exposure of the WPCs to UV irradiation was 1800 h. The water absorption, volumetric swelling and shrinkage of WPCs did not affected by UV irradiation. Among the mechanical properties, there was no significant differences in bending strength and screw withdrawal resistance of UV treated WPCs compared with those of reference WPCs. However, surface hardness of WPCs showed decrease under UV irradiation. Stereoscopic microscopy observation revealed deterioration of the surface layer polymer in all weathered WPCs by UV. Exposure of the WPCs to UV irradiation caused decomposition and disappearance of the polymer layer. From this result, we can estimate that damage of polymer by UV led to a decrease in the surface hardness of the WPCs. The wood flours retained original shape after accelerated weathering by UV irradiation.

CELL MORPHOLOGY CHANGE BY THE ULTRAVIOLET RAY IRRADIATION

  • Park, Myoung-Joo;Matuo, Yoichirou;Akiyama, Yoko;Izumi, Yoshinobu;Nishijima, Shigehiro
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.1
    • /
    • pp.15-24
    • /
    • 2009
  • The effect of low doses of ultraviolet (UV) irradiation on morphology changes of cell has been studied based on the observation of the cell length. It was shown that UV-irradiated cell has different behavior in comparison with non-irradiated cell. From the histogram of cell-length distribution, it was confirmed that cell cycle of non irradiated cell was 28 hours, and that cell cycle of irradiated cell with dose of $20\;Jm^{-2}$ was delayed (39 hours), while irradiated cell with $40\;Jm^{-2}$ and $60\;Jm^{-2}$ did not divide and kept growing continuously. It was supposed that in case of $20\;Jm^{-2}$ of irradiation dose, the cell cycle was delayed because the checkpoint worked in order to repair DNA damage induced by generation of pyrimidine dimer, reactive oxygen species and so on. It was also supposed that in case of $40\;Jm^{-2}$ and $60\;Jm^{-2}$ of irradiation dose, overgrowth was induced because the checkpoint was not worked well. The morphology of overgrown cell was similar to that of normally senescent cell. Therefore, it was considered that cell senescence was accelerated by UV irradiation with irradiation doses of $40\;Jm^{-2}$ and $60\;Jm^{-2}$.