• Title/Summary/Keyword: Ultraviolet (UVC)

Search Result 18, Processing Time 0.025 seconds

The Effect of Ultraviolet-C Radiation on Disinfection (Ultraviolet-C 조사의 살균 효과)

  • Choi, Houng-Sik;Choi, Kyu-Hwan;Park, So-Yeon
    • Physical Therapy Korea
    • /
    • v.9 no.3
    • /
    • pp.93-99
    • /
    • 2002
  • Traditionally, ultraviolet (UV) has been used for treating the pressure sore and skin wound. The effects of UVA and UVB radiation on disinfection have been reported. The purpose of this study was to examine the effectiveness of UVC radiation on disinfection of Escherichia coli, Staphylococcus aureus, Salmonella typhimurium in vitro. Three bacterium were radiated by UVC (250 nm, 20 seconds) and incubated at $37^{\circ}C$ for 24 hours at the agar culture medium. Kill rates of all three bacterium were 99.9%. UVC radiated on three kinds of bacterium for 30 or 60 seconds. Kill rates were 99.9% both 30 and 60 seconds. This data suggests that UV light at 250 nm could be a useful method to minimize infection and shorten healing time in pressure sore and skin wound condition.

  • PDF

A Study of Antibacterial Efficiency according to Direction of UV Irradiation in Cosmetic Case

  • Jeong, Jae Young;Hwang, You Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.2
    • /
    • pp.119-124
    • /
    • 2021
  • In this study, we propose an antibacterial efficiency according to the direction of UV irradiation. In the experiment, we measured the effective irradiation angle of UVC using S.aureus, a Gram-positive bacterium, and the variation of the antibacterial region according to the distance according to the direction of ultraviolet irradiation. Also, as a method to increase the antibacterial efficiency during horizontal irradiation of ultraviolet rays, we tested reflecting leaking UVC. As a result, the angle of ultraviolet irradiation was measured smaller than the product description, and in the case of the antibacterial area according to the direction of ultraviolet irradiation, the distance from the sample was increased during vertical irradiation, and the antibacterial area was increased as the distance from the sample was closer during horizontal irradiation. In addition, it was confirmed that antibacterial efficiency can be increased by reflecting leaking UVC during horizontal irradiation of UVC.

Trends of Deep UV-LED Technology for the Pathogen and Biotoxin Aerosol Detection System (병원균 및 생물독소 탐지시스템을 위한 원자외선 LED 기술동향)

  • Chong, Eugene;Jeong, Young-Su;Choi, Kibong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.5
    • /
    • pp.277-284
    • /
    • 2015
  • The humans are under attack involving the hazardous environment and pathogen/biotoxin aerosol that is realistic concerned. A portable, fast, reliable, and cheap Pathogen and Biotoxin Aerosol threat Detection(PBAD) trigger is an important technology for detect-to-protect and detect-to-treat system because the man-made biological terror is a fast and lethal infection. The ultraviolet C(UVC) wavelengths light source is key issue for PBAD that is sensitive because of strong fluorescence cross section from fluorescent amino acids in proteins such as tryptophan and tyrosine. The UVC-light emitting diode(LED) is emerging light source technology as alternative to laser or lamps as they offer several advantages. This paper discussed about the design consideration of UVC-LED for the PBAD system. The UVC-LED and PBAD technology, currently available or in development, are also discussed.

A Study on the Relationship of Change of Mechanical Properties and Carbonyl Index Induced through Short-wavelength Ultraviolet Radiation (254 nm) for High Density Polyethylene (단파장 자외선(254 nm)에 노출된 고밀도 폴리에틸렌 수지의 카르보닐 지수(CI)와 기계적 물성 변화의 관계에 관한 연구)

  • Kim, Chang-Hwan;Shin, Jin-Yong
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.138-143
    • /
    • 2013
  • This paper studied the possibility to predict a mechanical property variation from changes in created carbonyl bands by irradiating the surface of high-density polyethylene with short-wavelength ultraviolet radiation of 254 nm to induce a fast chemical degradation. The meaning of this study lies in checking whether a mechanical property change with the same chemical property as the induced optical deterioration is caused by using a UVC lamp with high photon energy instead of optical deterioration via xenon arc light source and outdoor exposure test via natural sunlight requiring a long time. The mechanical strength of high-density polyethylene checked by a tensile test and a creep destruction test showed a similar tendency with CI changes. In particular, the yield strength and elongation had a close relationship with the exposure time to ultraviolet radiation. Accordingly, this paper presented a method to grasp the mechanical property change outdoors requiring a long time more fast through the relationship between the mechanical property change and the carbonyl index using a UVC lamp causing the fast surface degradation.

The Influence of Circadian Gene Per2 on Cell Damaged by Ultraviolet C

  • Liu, Yanyou;Wang, Yuhui;Jiang, Zhou;Xiao, Jing;Wang, Zhengrong
    • Biomolecules & Therapeutics
    • /
    • v.19 no.3
    • /
    • pp.308-314
    • /
    • 2011
  • It has been shown that circadian genes not only play an important role on circadian rhythms, but also participate in other physiological and pathological activities, such as drug dependence, cancer development and radiation injury. The Per2, an indispensable component of the circadian clock, not only modulates circadian oscillations, but also regulates organic function. In the present study, we applied mPER2-upregulated NIH3T3 cells to reveal the relationship of mPer2 and the cells damaged by ultraviolet C (UVC). NIH3T3 cells at the peak of the expression of mPer2 induced by phorbol 12-myristate 13-acetate (PMA) demonstrated little damage by UVC evaluated by MTT assay, cell growth curves and cell colony-forming assay, compared with that at the nadir of the expression of mPer2. Overexpression of mPER2, accompanied p53 upregulated, also demonstrated protective effect on NIH3T3 cells damaged by UVC. These results suggest that mPer2 plays a protective effect on cells damaged by UVC, whose mechanism may be involved in upregulated p53.

Evaluation of Viral Inactivation Efficacy of a Continuous Flow Ultraviolet-C Reactor (UVivatec) (연속 유동 Ultraviolet-C 반응기(UVivatec)의 바이러스 불활화 효과 평가)

  • Bae, Jung-Eun;Jeong, Eun-Kyo;Lee, Jae-Il;Lee, Jeong-Im;Kim, In-Seop;Kim, Jong-Su
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.4
    • /
    • pp.377-382
    • /
    • 2009
  • Viral safety is an important prerequisite for clinical preparations of all biopharmaceuticals derived from plasma, cell lines, or tissues of human or animal origin. To ensure the safety, implementation of multiple viral clearance (inactivation and/or removal) steps has been highly recommended for manufacturing of biopharmaceuticals. Of the possible viral clearance strategies, Ultraviolet-C (UVC) irradiation has been known as an effective viral inactivating method. However it has been dismissed by biopharmaceutical industry as a result of the potential for protein damage and the difficulty in delivering uniform doses. Recently a continuous flow UVC reactor (UVivatec) was developed to provide highly efficient mixing and maximize virus exposure to the UV light. In order to investigate the effectiveness of UVivatec to inactivate viruses without causing significant protein damage, the feasibility of the UVC irradiation process was studied with a commercial therapeutic protein. Recovery yield in the optimized condition of $3,000\;J/m^2$ irradiation was more than 98%. The efficacy and robustness of the UVC reactor was evaluated with regard to the inactivation of human immunodeficiency virus (HIV), hepatitis A virus (HAV), bovine herpes virus (BHV), bovine viral diarrhea virus (BVDV), porcine parvovirus (PPV), bovine parvovirus (BPV), minute virus of mice (MVM), reovirus type 3 (REO), and bovine parainfluenza virus type 3 (BPIV). Non enveloped viruses (HAV, PPV, BPV, MVM, and REO) were completely inactivated to undetectable levels by $3,000\;J/m^2$ irradiation. Enveloped viruses such as HIV, BVDV, and BPIV were completely inactivated to undetectable levels. However BHV was incompletely inactivated with slight residual infectivity remaining even after $3,000\;J/m^2$ irradiation. The log reduction factors achieved by UVC irradiation were ${\geq}3.89$ for HIV, ${\geq}5.27$ for HAV, 5.29 for BHV, ${\geq}5.96$ for BVDV, ${\geq}4.37$ for PPV, ${\geq}3.55$ for BPV, ${\geq}3.51$ for MVM, ${\geq}4.20$ for REO, and ${\geq}4.15$ for BPIV. These results indicate that UVC irradiation using UVivatec was very effective and robust in inactivating all the viruses tested.

Degradation Characteristic of Endocrine Disruptors (DEP, NP) Using Combined Advanced Oxidation Processes (AOPs) (혼합된 고급산화공정(AOPs)을 이용한 내분비계장애물질(DEP, NP)의 분해특성 연구)

  • Na, Seung-Min;Ahn, Yun-Gyong;Cui, Ming-Can;Cho, Sang-Hyun;Khim, Jee-Hyeong
    • Journal of Environmental Science International
    • /
    • v.20 no.2
    • /
    • pp.231-239
    • /
    • 2011
  • Diethyl phthalate (DEP) and nonylphenol (NP) are widely spread in the natural environment as an endocrine disruption chemicals (EDs). Therefore, in this study, ultrasound (US) and ultraviolet (UVC), including $TiO_2$, as advanced oxidation processes (AOPs) were applied to a DEP and NP contaminated solution. When only the application of US, the optimum frequency for significant DEP degradation and a high rate of hydrogen peroxide ($H_2O_2$) formation was 283 kHz. We know that the main mechanism of DEP degradation is radical reaction and, NP can be affected by both of radical reaction and pyrolysis through only US (sonolysis) process and combined US+UVC (sonophotolysis) process. At combined AOPs (sonophotolysis/sonophotocatalysis) such as US+UVC and US+UVC+$TiO_2$, significant degradation of DEP and NP were observed. Enhancement effect of sonophotolysis and sonophotocatalysis system of DEP and NP were 1.68/1.38 and 0.99/1.17, respectively. From these results, combined sonophotocatalytic process could be more efficient system to obtain a significant DEP and NP degradation.

Effect of control measures on the contamination and growth inhibition of Listeria monocytogenes in Flammulina velutipes (팽이버섯 재배 농가에서 Listeria monocytogenes 오염과 성장억제를 위한 관리기술 효과)

  • Lee, Ha Kyoung;Jeon, Ji Hye;Lee, Ji Soo;Yoon, Seo Young;Kim, Won Young;Yoon, Ki Sun
    • Journal of Mushroom
    • /
    • v.20 no.2
    • /
    • pp.78-85
    • /
    • 2022
  • The consumption of Flammulina velutipes mushroom imported from Korea has been associated with the cases of listeriosis in the United States, Canada, and Australia. We investigated the effect of sanitizing the plastic wrapper (used in packaging F. velutipes) with slightly acidic electrolyzed water (SAEW) and ultraviolet C waterproof light-emitting diode (UVC-W-LED) on reducing the Listeria monocytogenes. Further, the effect of UVC-LED on L. monocytogenes growth in F. velutipes at different storage temperatures (2, 4, and 10℃) was determined. The combined (SAEW+UVC-W-LED) treatment for 5-10 min reduced 99.9% of bacterial population from the contaminated plastic wrapper. In addition, the UVC-LED treatment for 3 min reduced the L. monocytogenes concentration in F. velutipes by 0.47 log CFU/g. Moreover, the growth of L. monocytogenes in the treated mushrooms was slower than that of the untreated (control) ones. L. monocytogenes concentration in F. velutipes increased over 3 log CFU/g at 2℃ and 10℃ for 60 and 10 days, respectively. The growth of L. monocytogenes at the bottom of mushrooms was faster than that at the top at both the temperatures. These results indicate that the combined SAEW+UVC-W-LED treatment of plastic wrappers and the UVC-LED treatment of mushrooms can be used as potential hurdle technologies to control the risk of L. monocytogenes in mushrooms prior to packaging at farms.

Antiapoptotic Effects Induced by Different Wavelengths of Ultraviolet Light

  • Ibuki, Yuko;Goto, Rensuke
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.485-487
    • /
    • 2002
  • Cells receive signals for survival as well as death, and the balance between the two ultimately determines the fate of the cells. UV-triggered apoptotic signaling has been well documented, whereas UV-induced survival effects have received little attention. We have reported previously that UVB irradiation prevented apoptosis, which was partly dependent on activation of the phosphatidylinositol 3-kinase (PI3-kinase)/ Akt pathway. In this study, anti-apoptotic effects of UV with different wavelength ranges, UVA, UVB and UVC, were examined. NIH3T3 cells showed apoptotic cell death by detachment from the extracellular matrix under serum-free conditions, which was prevented by all wavelengths. However, the effect of UVA was less than those of UVB and UVC. Reduction of mitochondrial transmembrane potential and activation of caspase-9 and -3 were suppressed by all three wavelengths of UV, showing wavelength-dependent effects as mentioned above. The PI3-kinase inhibitor wortmannin partially inhibittrl the UVB and UVC-induced suppression of apoptosis, but not the inhibitoty effect of UVA. The Akt phosphotylation by UVB and UVC was completely inhibittrl by addition of wortmannin, but that by UVA was not P38 MAP kinase inhibitor SB203580 partially inhibited the UVB and UVC-induced suppression of apoptosis and Akt phosphotylation, and completely inhibited UVA-induced those. These results suggested the existence of two different survival pathways leading to suppression of apoptosis, one for UVA that is independent of the PI3-kinase/Akt pathway and dependent on p38 MAP kinase, and the other for UVB and UVC that is dependent on both pathways.

  • PDF

Fabrication of a Water Sterilization System Utilizing a 275 nm-wavelength UVC LED and TIR Lens-equipped Light Source (275 nm UVC LED와 TIR 렌즈 장착 광원을 이용하는 물 살균장치 제작)

  • Kawan Anil;Seung Hui Yu;Seung Hoon Yu;J. A. Park;I. S. Shin;S. J. Lee;Y. B. Kim;Y. B. Kown;D. G. Han;Soon Jae Yu;Heetae Kim;Seong Bae Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.1
    • /
    • pp.84-87
    • /
    • 2024
  • A water sterilization system is developed utilizing a 275 nm-wavelength LED light source equipped with a TIR lens. The system's light source is constructed by combining a 275 nm-wavelength UVC LED, known for its germicidal properties, with a TIR lens having a direction angle of 6.8 degrees. The optical simulation software 'LightTools' is employed to design and optimize the intensity of deep ultraviolet sterilizing light irradiation, its distribution, and sterilization capacity. In the inactivation experiment with E. coli, the water sterilizer system achieved a sterilization rate of 78.92 % while maintaining a water flow capacity of 50 L/min. Compared to the conventional mercury lamp light source water sterilizer system, the UVC LED water sterilizer system addresses environmental concerns related to mercury usage and offers advantages in terms of lifespan and durability.

  • PDF