• Title/Summary/Keyword: Ultrasound volume measurement

Search Result 22, Processing Time 0.021 seconds

A New Algorithm to Estimate Urine Volume from 3D Ultrasound Bladder Images (3D 초음파 영상에서 방광 내 잔뇨량 추정을 위한 새로운 알고리즘)

  • Cho, Tae Sik;Lee, Soo Yeol;Cho, Min Hyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.31-38
    • /
    • 2016
  • For the patients with bladder dysfunction, measurement of urine volume inside the bladder is very critical to avoid bladder failure. In measuring urine volume inside a bladder, low-resolution 3D ultrasound images are widely used. However, urine volume estimation from 3D ultrasound images is prone to big errors and inconsistency because of low spatial resolution and low signal-to-noise ratio of ultrasound images. We developed a new robust volume estimation algorithm which is not computationally expensive. We tested the algorithm on a lab-built ultrasound bladder phantom and volunteers. The average error rate of the human bladder volume estimation was 5.9% which was better than the commercial machine.

A New Ultrasound Bladder Scanner to Estimate Urine Volume Using Hand-Motion Scan (손 동작 스캔을 이용한 잔뇨량 측정용 초음파 방광 스캐너)

  • Lee, Jung Hwan;Bae, Jung Ho;Lee, Soo Yeol;Cho, Min Hyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.4
    • /
    • pp.153-160
    • /
    • 2018
  • 3D ultrasound bladder scanners are getting popular in hospitals for the patients with bladder dysfunction. A current bladder scanner adopts a mechanical scan to acquire 3D images and requires two motors and complicated mechanical devices. In this paper, we propose a new ultrasound bladder scanner using hand-motion scan. Instead of two motors and mechanical devices, it has a motion sensor to record transducer positions during hand-motion scan. The experiments with a bladder phantom and volunteers showed similar measurement accuracy to a conventional 3D ultrasound bladder scanner. We expect that the proposed method will reduce the cost and size of the bladder scanner.

Development of Ultrasound Phantom for Volume Calibration (부피 측정을 위한 초음파 팬텀 개발)

  • Kim, Hye-Young;Lee, Ji-Hae;Lee, Kyung-Ja;Suh, Hyun-Suk;Lee, Re-Na
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.227-230
    • /
    • 2008
  • The purpose of this study was to design and construct an ultrasound phantom for volume calibration and evaluate the volume measurement accuracy of a 2 dimensional ultrasonic system. Ultrasound phantom was designed, constructed and tested. The phantom consisted of a background material and a target. The background was made by mixing agarose gel with water. A target, made with an elastic material, was filled with water to vary its volume and shape and inserted into background material. To evaluate accuracy of a 2 dimensional ultrasonic system (128XP, ACUSON), three different shapes of targets (a sphere, 2 ellipsoids and a triangular prism) were constructed. In case of ellipsoid shape, two targets, one with same size length and width (ellipsoid 1) and another with the length 2 times longer than width (ellipsoid 2) were examined. The target volumes of each shape were varied from 94cc to 450cc and measurement accuracy was examined. The volume difference between the real and measured target of the sphere shape ranged between 6.7 and 11%. For the ellipsoid targets, the differences ranged from 9.2 to 10.5% with ellipsoid 1 and 25.7% with ellipsoid 2. The volume difference of the triangular prism target ranged between 20.8 and 35%. An easy and simple method of constructing an ultrasound phantom was introduced and it was possible to check the volume measurement accuracy of an ultrasound system.

  • PDF

Accuracy and Usefulness of Volume Measurement using CT and Ultrasound Scan Data (CT 및 초음파 스캔 데이터를 이용한 체적 측정의 정확도 및 유용성)

  • Kim, Hyeon-Ju;Lee, Hoo-Min;Yoon, Joon
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.289-294
    • /
    • 2022
  • In this study, the accuracy and usefulness of volume measurement were investigated as a phantom experiment using CT and USG scan data and a clinical trial using patient scan data. As a result, there was no significant difference between the volume of the actual round phantom of various volumes for both the CT and ultrasound devices (p>0.05). As a result of statistical analysis, it was analyzed that there was no significant difference (p>0.05). Clinical application of this result requires more clinical trials, but if a CT or ultrasound device is selected and applied in consideration of patient radiation exposure, the examiner's scanning technology, and CT reconstruction experience, the basic data in terms of the usefulness of volume measurement using CT scan image is considered to have application value.

Development of Echo PIV Using Ultrasound Contrast Agent (초음파 조영제를 애용한 Echo PIV 기법의 개발)

  • Kim, Hyoung-Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1528-1534
    • /
    • 2004
  • The combination of ultrasound echo images with digital particle image velocimetry (DPIV) methods has resulted in a two-dimensional, two-component velocity field measurement technique appropriate for opaque flow conditions including blood flow in clinical applications. Advanced PIV processing algorithms including an iterative scheme and window offsetting were used to increase spatial resolution. The optimum concentration of the ultrasound contrast agent used for seeding was explored. Velocity validation tests in fully developed laminar pipe flow result of echo PIV showed good agreement with both optical PIV measurements and the known analytic solution based on a volume flow measurement.

Comparison of real-time ultrasound imaging for manual lymphatic drainage on breast cancer-related lymphedema in individuals with breast cancer: a preliminary study

  • Seo, Dongkwon;Lee, Seungwon;Choi, Wonjae
    • Physical Therapy Rehabilitation Science
    • /
    • v.9 no.1
    • /
    • pp.43-48
    • /
    • 2020
  • Objective: Breast cancer-related lymphedema (BCRL) is a major sequela after surgery or radiotherarpy for breast cancer. Manual lymphatic drainage (MLD) is designed to reduce lymph swelling by facilitating lymphatic drainage. This study attempted to determine the histologic changes in the skin and subcutaneous layer, and the immediate effect of MLD in decreasing lymphedema using ultrasound imaging, which is the method used most commonly to eliminate BCRL. Design: A single-group experimental study. Methods: Five subjects who were diagnosed with hemiparetic upper extremity lymphedema more than six months after breast cancer surgery participated in the study. MLD was performed for 60 minutes in the order of the thorax, breast, axilla, and upper arm of the affected side. In order to determine the effect of MLD, ultrasound imaging and limb volume were assessed. Two measurement tools were used for asessing lymphedema thickness among the pretest, posttest, and 30-minute follow-up period. Results: Significant diferences in ultrasound imaging and upper limb volume were found between the affected side and non-affected side (p<0.05). On the affected side, although ultrasound imaging showed a significant decrease after MLD (p<0.05), there were no significant difference in upper limb volume when compared to the baseline. Conclusions: In this study, a significant decrease in lymphedema by MLD was demonstrated by ultrasound imaging, which is considered to be more useful in assessing histological changes than limb volume measurements. Further research on the protocol for eliminating lymphedema will be needed.

A Study on the Accuracy of Measurement of Residual Urine Amount depending on the Bladder form using Ultrasonic (초음파를 이용한 Bladder형태에 따른 잔뇨량 측정의 정확도 연구)

  • Kim, Y.M.;Park, T.H.;Kim, J.H.;Kim, S.J.;Hoon, J.D.;Heo, J.Y.;Han, D.G.
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.16 no.2
    • /
    • pp.1-7
    • /
    • 2014
  • This study is to increase the accuracy of the diagnosis of benign prostatic hyperplasia by presenting a method that can accurately measure the residual urine amount of the bladder by using an ultrasound image. Agar powder, Propanol and distilled water were used as materials for making a phantom. In order to measure the volume, a $10m{\ell}$ cylinder, syringe and beaker were used. The image was obtained by scanning phantoms produced into six shapes. Each constant value was obtained by using the expression designed to measure the residual urine amount of the bladder and was compared and analyzed. The measuring method of Bladder volume was presented and a constant value for each shape was obtained and five observers measured it five times. According to the results of clinical application, the errors of Ellipse-beanbag, Shield-shield were 11.0%, 18.2%, respectively. Constant values depending on the shape of each phantom were presented in order to accurately measure the volume of the bladder in measuring the amount of residual urine for the diagnosis of benign prostatic hyperplasia. The accuracy of the volume using this was verified statistically(p > 0.05). Therefore, it is considered to be useful in diagnosing benign prostatic hyperplasia by using the ultrasound imaging measuring method presented.

  • PDF

Measurement of Prostate Phantom Volume Using Three-Dimensional Medical Imaging Modalities (3차원 의료영상진단기기를 이용한 가상 전립선 용적 측정)

  • Seoung, Youl-Hun;Joo, Yong-Hyun;Choe, Bo-Young
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.4
    • /
    • pp.285-291
    • /
    • 2010
  • Recently, advance on various modalities of diagnosing, prostate volume estimation became possible not only by the existing two-dimension medical images data but also by the three-dimensional medical images data. In this study, magnetic resonance image (MRI), computer tomography (CT) and ultrasound (US) were employed to evaluate prostate phantom volume measurements for estimation, comparison and analysis. For the prostate phantoms aimed at estimating the volume, total of 17 models were developed by using devils-tongue jelly and changing each of the 5ml of capacity from 20ml to 100ml. For the volume estimation through 2D US, the calculation of the diameter with C9-5Mhz transducer was conducted by ellipsoid formula. For the volume estimation through 3D US, the Qlab software (Philips Medical) was used to calculate the volume data estimated by 3D9-3Mhz transducer. Moreover, the images by 16 channels CT and 1.5 Tesla MRI were added by the method of continuous cross-section addition and each of imaginary prostate model's volume was yielded. In the statistical analysis for comparing the availability of volume estimation, the correlation coefficient (r) was more than 0.9 for all indicating that there were highly correlated, and there were not statistically significant difference between each of the correlation coefficient (p=0.001). Therefore, the estimation of prostate phantom volume using three-dimensional modalities of diagnosing was quite closed to the actual estimation.

A Study on the Development of Ultrasonic Urine Volume Detection Sensor and the Correlation between Urine Volume and Bladder Interwall Distance (초음파 뇨량검출 센서의 제작 및 방광 벽간거리와 뇨량과의 상관관계에 관한 연구)

  • Choi, H.H.;Lee, E.H.
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.256-267
    • /
    • 2000
  • In this paper, we studied the ultrasonic urine volume sensor of urinary alarm system for home use to detect the time of urination as a assistive methodology for the incontinence patients and the correlation between urine volume and bladder interwall distance by using developed sensor. The developed sensor was designed to minimize the measurement error by using ultrasound with 2.25 MHz center frequency which provides higher resolution as well as longer penetration depth. To verify usefulness of the developed sensor, we performed a preliminary experiment of estimating bladder volume from the measured distance between interior and posterior wall of bladder. In the preliminary experiment, bladder volume estimated from the result using a commercial ultrasonography system. The experimental results show there exists god correlation between the actual urine volume and the measured interwall distance of the bladder. In conclusion, the developed ultrasound bladder volume sensor can be applied to an urine alarm system which provides patient the exact time of urination, it will be contribute in health care and welfare society.

  • PDF

Characteristics of deodorization for malodorants in aqueous solution by sonication

  • Yoo, Young-Eok;Maeda, Yasuaki
    • Journal of Environmental Science International
    • /
    • v.13 no.2
    • /
    • pp.167-173
    • /
    • 2004
  • A aqueous solution of malodorants (i.e., n-valeraldehyde, n-valeric- acid, 2-methylisoborneol, and trimethylamine) was exposed to 200KHz ultrasound with a power of 6.0W/$\textrm{cm}^2$ per unit volume in a sonochemical reactor under room temperature and atmospheric pressure condition. The concentration of malodorants decreased with irradiation time, indicating pseudo-first-order kinetics. The removal efficiency of malodorants was about from 50% to 96% decomposed after 90 minutes sonication. At the deodorization, it was determined by triangle odor bag(TOB) method for odor sensory measurement, and it indicated that over 60% of relative odors were deodorized with degradation by the sonication.