• 제목/요약/키워드: Ultrasound signal

검색결과 195건 처리시간 0.028초

멀티주파수 초음파를 사용하는 피부 치료기기 트랜스듀서의 효율적인 주파수 제어 연구 (A Study on Efficient Frequency Control of Transducer for Skin Treatment Using Multi-Frequency Ultrasound)

  • 박종철;김민성
    • 한국멀티미디어학회논문지
    • /
    • 제25권8호
    • /
    • pp.1038-1048
    • /
    • 2022
  • Ultrasound is one of the effective methods for skin treatment. The skin penetration depth of the ultrasound depends on the ultrasonic frequency, that is, when the ultrasonic frequency is high, the depth is shallow. We have developed a transducer which can generate effectively 3 different ultrasonic frequencies removing interference between 3 types of frequencies according to impedance matching technology. The generated powers of transducer are 40.67W at 3.MHz, 17.46W at 11.7 MHz, and 14.79W at 21.5 MHz. The signal interference between the three frequencies is designed so that they do not interfere with each other by separating the signals using the SPDT (Single Pole, Double Throw) switch. The developed hybrid ultrasound transducer can be applied in skin care or skin treatment and beauty therapy.

라플라시안 피라미드 기반 총변동 잡음제거 기법을 이용한 초음파 영상 스펙클 제거 유용성 평가 (Evaluation on the Usefulness of Ultrasound Image Speckle Reduction Using Total Variation Denoising (TVD) Method in Laplacian Pyramid)

  • 문주혜;최동혁;이수열;태기식
    • 대한의용생체공학회:의공학회지
    • /
    • 제37권4호
    • /
    • pp.140-146
    • /
    • 2016
  • The ultrasound imaging in medical diagnosis has become a popular modality because of its safe, noninvasive, portable, relatively inexpensive, and provides a real-time image formation. However, usefulness of ultrasound imaging is at times limited due to the presence of signal-dependent noise like as speckle. Therefore, noise reduction is very important, as various types of noise generated limits the effectiveness of medical image diagnosis. This paper introduces a speckle noise reduce algorithm using total variation denoising (TVD) in Laplacian pyramid. With this method, speckle is removed by TVD of bandpass ultrasound images in Laplacian pyramid domain. For TVD in each pyramid layer, a ${\lambda}$ is selected by trial-and-error method. The visual comparison of despeckled 'in vivo' ultrasound images from pancreas shows that the proposed method could effectively preserve edges and detailed structures while thoroughly suppressing speckle. For a Simulated B-mode image, contrast-to-noise-ratio (CNR) and signal-to-noise-ratio (SNR) were obtained like 4.65 dB and 14.11 dB, respectively. The results show that the proposed method can conduct better than some of the existing methods in terms of the CNR and the SNR.

감쇠 계수 추출을 위한 초음파 신호 분석 연구 - Homomorphic Process와 수정된 spectral difference방법을 사용하여 얻은 실리콘 팬텀의 감쇠 계수 안정성에 관한 연구 - (The Study on the Ultrasound Signal Processing for Estimating the Attenuation Coefficient - The study on the stability of the attenuation coefficient in silicon-made phantom using both homomorphic process and the modified spectral difference method -)

  • 송인찬;민병구
    • 대한의용생체공학회:의공학회지
    • /
    • 제12권4호
    • /
    • pp.249-254
    • /
    • 1991
  • In the study on the quantitative diagnosis using ultrasound, the stability and precision of tissue characterized parameters are important for the clinical application. We estimate attenuation coefficient introducing homomorphlc process Into the modified spectral differnce method about silicon-madu phantom. We compare the results with those estimated uslng the method used for obtaining the attenuation map image before. Homomorphic process has the effect smoothing the reflected echo signal spectrum, therefore eliminat os the random pattern of the signal spectrum generated by the scatterers. As a result, it Is shown that the stability is enhanced

  • PDF

의공학적 기법에 의한 간암의 검진과 치료경과의 정량 : 칼만 필터링 기법에 의한 초음파 영상 처리 (Bioengineering Approaches to Quantitation of Diagnosis and Treatment Monitoring for Patients with Liver Cancer: Ultrasonic Image Processing by Kalman Filtering)

  • 우광방;남상일
    • 대한의용생체공학회:의공학회지
    • /
    • 제6권1호
    • /
    • pp.5-12
    • /
    • 1985
  • In this paper Kalman filtering technique is applied to ultrasound signal to improve resolution capability, Ivhlch is in use of diagnostic imaging systems. The main advantage of Kalman filter algorithm for the analysis of reflected ultrasound signal is its recursive structure which can be easily adapted to tlme varing system. Because soft-tissues, such as liver, act as distributed acoustic low-pass filters which continually change the propagating pulse. tIne can put to practical use above advantage to find a suitable signal generallng model. In state-space description of the system, the 6th order system produces tl)e 1)esc spectral approximation to the source pulse As a result of spectrum analysis, 6th order estimator for two closely spaced ((p.5 mm) reflectors enhances resolution by 4dB-lOdB. By using this result, the possibility to detect even minute tumor is demonstrated.

  • PDF

유한차분법을 이용한 기능성 위장 장애 진단용 초음파 시스템의 개발 (Development of Ultrasound Diagnostic System for Functional Gastrointestinal Disorders using Finite Difference Method)

  • 박원필;우대곤;고창용;이균정;이용흠;최서형;신태민;김한성;임도형
    • 한국정밀공학회지
    • /
    • 제24권9호
    • /
    • pp.130-139
    • /
    • 2007
  • The disaster from functional gastrointestinal disorders (FGID) has detrimental impact on the quality of life of the affected population. There are, however, rare diagnostic methods for FGID. Our research group identified recently that the gastrointestinal tract well of the patients with FGID became more rigid than that of healthy people when palpating the abdominal regions overlaying the gastrointestinal tract. The objective of the current study is, therefore, to identify feasibility of a diagnostic system for FGID based on ultrasound technique, which can quantify the characteristics above. Two-dimensional finite difference (FD) models (one normal and two rigid models) were developed to analyze the reflective characteristic (displacement) on each soft-tissue layer responded after application of ultrasound signals. Based on the results from FD analysis, the ultrasound system for diagnosis of the FGID was developed and clinically tested via application of it to 40 human subjects with/without FGID who were assigned to Normal and Patient Groups. The results from FD analysis showed that the maximum displacement amplitude in the rigid models (0.12 and 0.16) at the interface between the fat and muscle layers was explicitly less than that in the normal model (0.29). The results from actual specimens showed that the maximum amplitude of the ultrasound reflective signal in the rigid models $(0.2{\pm}0.1Vp-p)$ at the interface between the fat and muscle layers was explicitly higher than that in the normal model $(0.1{\pm}0.0Vp-p)$. Clinical tests using our customized ultrasound system showed that the maximum amplitudes of the ultrasound reflective signals near to the gastrointestinal tract well for the patient group $(2.6{\pm}0.3Vp-p)$ were generally higher than those in normal group $(0.1{\pm}0.2Vp-p)$. These findings suggest that our customized ultrasound system using the ultrasound reflective signal may be helpful to the diagnosis of the FGID.

초음파와 RF를 이용한 자세결정 (Attitude Determination Technique using Ultrasound and RF Signal)

  • 김승범;강동연;윤희학;이건우;이상정;박찬식
    • 제어로봇시스템학회논문지
    • /
    • 제13권10호
    • /
    • pp.1025-1031
    • /
    • 2007
  • GPS is widely used for positioning applications and attitude of a vehicle can be found also with multiple antennas. However, extremely weak signal level prevents GPS from indoor operation. DR with accelerometers and gyros and landmark based localization method used for indoor applications increase complexity and cost. In this paper, a simple but very efficient ultrasound based attitude determination system which determines both position and attitude in WSN is given. The range between transmitter and receivers are measured using the arrival time difference between ultrasound and RF signal. The 3 dimensional positions can be found using more than 3 range measurements. Furthermore, if more than 2 transmitters are used, the attitude can be determined using the baseline vectors obtained by differencing transmitter and receiver positions. The prototype system is implemented to evaluate the performance of the proposed method. In addition, an error analysis shows the relation between the attitude error and basel me length, quality of measurement and orientation of a vehicle. The static and dynamic experiments performed by micro mobile robot shows accurate position with less than 1.5cm error and attitude with less than 1 degree error can be obtained continuously with 20cm baseline. It is expected that these results can be adapted without modification to indoor applications such as home cleaning robot and autonomous wheelchair maneuvering.

Positioning using ZigBee and Ultrasound

  • Park, Chan-Sik;Kim, Seung-Beom;Kang, Dong-Youn;Yun, Hee-Hak;Cha, En-Jong;Lee, Sang-Jeong
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
    • /
    • pp.217-222
    • /
    • 2006
  • To find a location, GPS has been wildly used. But, it is hard to use in indoor because of very weak signal level. To meet indoor requirements, there have been many studies applying wireless communication networks such as WLAN, UWB and ZigBee. Among these, ZigBee is widely adopted in many WSN applications because it has an advantage of low-power and low-cost. In ZigBee, the RSSI is used as range measurement for ad-hoc network. The RSSI are converted to ranges using the signal attenuation model and these ranges become inputs of positioning methods. The obtained position with RSSI has large error because of its poor accuracy. To overcome this problem, ultrasonic sensors are added in many researches. By measuring the arrival time difference of ZigBee and ultrasound as a range measurement, the precise position can be found. However, there are still many problems: scheduling of beacons to transmit signals in a correct order, addition and synchronization of beacons and low-rate positioning rate. At this paper, an efficient method to solve these problems is proposed. In the proposed method, a node transmits ZigBee and ultrasound signal simultaneously. And beacons find the range with the received signals and send it back to a node with ZigBee. The position is computed in a node with the received ranges. In addition, a new positioning algorithm to solve the risk of the divergence in the linearization method and the singularity problem in the Savarese method is presented. Both static and dynamic experimental results show 0.02m RMS errors with high output rate.

  • PDF

A bond graph approach to energy efficiency analysis of a self-powered wireless pressure sensor

  • Cui, Yong;Gao, Robert X.;Yang, Dengfeng;Kazmer, David O.
    • Smart Structures and Systems
    • /
    • 제3권1호
    • /
    • pp.1-22
    • /
    • 2007
  • The energy efficiency of a self-powered wireless sensing system for pressure monitoring in injection molding is analyzed using Bond graph models. The sensing system, located within the mold cavity, consists of an energy converter, an energy modulator, and a ultrasonic signal transmitter. Pressure variation in the mold cavity is extracted by the energy converter and transmitted through the mold steel to a signal receiver located outside of the mold, in the form of ultrasound pulse trains. Through Bond graph models, the energy efficiency of the sensing system is characterized as a function of the configuration of a piezoceramic stack within the energy converter, the pulsing cycle of the energy modulator, and the thicknesses of the various layers that make up the ultrasonic signal transmitter. The obtained energy models are subsequently utilized to identify the minimum level of signal intensity required to ensure successful detection of the ultrasound pulse trains by the signal receiver. The Bond graph models established have shown to be useful in optimizing the design of the various constituent components within the sensing system to achieve high energy conversion efficiency under a compact size, which are critical to successful embedment within the mold structure.

인체 삽입형 인공 의료 기구물 기계적 결함 모니터링을 위한 초음파 시스템 및 계측 기술 연구 (Research on Ultrasound System and Measurement Technology for Mechanical Defect Monitoring of Human-inserted Artificial Medical Devices)

  • 윤상연;이문환;황재윤
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.470-473
    • /
    • 2021
  • 본 연구에서는 인공 관절치환술 시 삽입되는 라이너의 잔존 두께 측정과 비구컵과의 결합 상태를 판별 할 수 있는 생체 삽입형 보철물 두께 측정 시스템 개발을 위한 생체 삽입형 초음파 변환자의 개발, 잔존 두께측정 알고리즘 및 최적화된 초음파 운용 방법에 대한 연구를 진행했다. 세부적으로, 비슷한 민감도와 대역폭을 갖는 8MHz 와 20MHz의 중심주파수를 갖는 초음파 변환자를 제작하여 상용 폴리에틸렌 재질의 인공 고관절 라이너의 다양한 두께를 측정함으로써 신호대잡음비와 축방향 해상도 비교 분석을 진행하여 체내 초음파 운용 방식 최적화 연구를 진행하였다.

  • PDF

Fabrication of Microcantilever Ultrasound Sensor and Its Application to the Scanning Laser Source Technique

  • Sohn, Young-Hoon;Krishnaswamy, Sridhar
    • 비파괴검사학회지
    • /
    • 제25권6호
    • /
    • pp.459-466
    • /
    • 2005
  • The scanning laser source (SLS) technique has been proposed recently as an effective way to investigate small surface-breaking defects, By monitoring the amplitude and frequency changes of the ultrasound generated as the SLS scans over a defect, the SLS technique has provided enhanced signal-to-noise performance compared to the traditional pitch-catch or pulse-echo ultrasonic methods, An extension of the SLS approach to map defects in microdevices is proposed by bringing both the generator and the receiver to the near-field scattering region of the defects, To facilitate near-field ultrasound measurement, silicon microcantilever probes are fabricated using microfabrication technique and their acoustical characteristics are investigated, Then, both the laser-generated ultrasonic source and the microcantilever probe are used to monitor near-field scattering by a surface-breaking defect.