• Title/Summary/Keyword: Ultrasound Noise

Search Result 108, Processing Time 0.026 seconds

Improvement of Medical Ultrasound Strain Image Using Lateral Motion Compensation (측방향 움직임 보상을 이용한 초음파 의료용 변형률 영상의 화질개선)

  • Park, Myung-Ki;Kwon, Sung-Jae;Jeong, Mok-Kun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.5
    • /
    • pp.239-248
    • /
    • 2011
  • In order to improve the quality of strain images in medical ultrasound imaging, displacements need to be accurately estimated. In this paper, in order to apply one-dimensional displacement estimation methods to two-dimensional motion estimation, the axial and lateral displacements are separately estimated. In order to estimate lateral displacements, one-dimensional signals aligned in the lateral direction are converted to analytic signals, which are then crosscorrelated. Strain images are produced by first compensating two-dimensional displacements for lateral motion with lateral motion displacement estimates obtained from the proposed lateral displacement estimation algorithm and then estimating axial displacements. Both phantom and human data experiments show that the proposed method provides better signal-to-noise ratio and contrast-to-noise ratio characteristics than a conventional strain imaging method that utilizes axial displacement estimates only.

Estimation of Medical Ultrasound Attenuation using Adaptive Bandpass Filters (적응 대역필터를 이용한 의료 초음파 감쇠 예측)

  • Heo, Seo-Weon;Yi, Joon-Hwan;Kim, Hyung-Suk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.5
    • /
    • pp.43-51
    • /
    • 2010
  • Attenuation coefficients of medical ultrasound not only reflect the pathological information of tissues scanned but also provide the quantitative information to compensate the decay of backscattered signals for other medical ultrasound parameters. Based on the frequency-selective attenuation property of human tissues, attenuation estimation methods in spectral domain have difficulties for real-time implementation due to the complexicity while estimation methods in time domain do not achieve the compensation for the diffraction effect effectively. In this paper, we propose the modified VSA method, which compensates the diffraction with reference phantom in time domain, using adaptive bandpass filters with decreasing center frequencies along depths. The adaptive bandpass filtering technique minimizes the distortion of relative echogenicity of wideband transmit pulses and maximizes the signal-to-noise ratio due to the random scattering, especially at deeper depths. Since the filtering center frequencies change according to the accumulated attenuation, the proposed algorithm improves estimation accuracy and precision comparing to the fixed filtering method. Computer simulation and experimental results using tissue-mimicking phantoms demonstrate that the distortion of relative echogenicity is decreased at deeper depths, and the accuracy of attenuation estimation is improved by 5.1% and the standard deviation is decreased by 46.9% for the entire scan depth.

Ultrasonic Backward Radiation on Randomly Rough Surface (무작위로 거친 표면에서의 후방복사 초음파)

  • Kwon, Sung-D.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.1
    • /
    • pp.9-14
    • /
    • 2005
  • The angular dependence(profile) of backward radiated ultrasound was measured for glass specimens with random surface roughness using ultrasonic goniometer that ran changes the incident angle continuously. It was concluded that the roughened region had greater acoustic impedance than the unperturbed region. The comparison of backward radiations showed that the amplitude of peak and the area of radiation profile were increased with surface roughness. It was suggested from the sensitive dependence of the profile area that the profile of backward radiation could be applied to in the nondestructive evaluation of sulfate region. Inclined C-scan technique with the transducer inclined at Rayleigh angle showed the reverse of luminosity and the high signal to noise ratio so that it provided high resolution.

Extracting Ganglion in Ultrasound Image using DBSCAN and FCM based 2-layer Clustering (DBSCAN과 FCM 기반 2-Layer 클러스터링을 이용한 초음파 영상에서의 결절종 추출)

  • Park, Tae-eun;Song, Jae-uk;Kim, Kwang-baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.186-188
    • /
    • 2021
  • 본 논문에서는 초음파 영상에서 DBSCAN(Density-based spatial clustering of applications with noise)과 FCM 클러스터링 기반 양자화 기법을 적용하여 결절종을 추출하는 방법을 제안한다. 본 논문에서는 초음파 영상 촬영 시 좌우 상단의 지방층 영역과 하단 영역의 명암도가 어두운 영역을 잡음 영역으로 설정한다. 그리고 초음파 영상에 퍼지스트레칭 기법을 적용하여 잡음 영역을 최대한 제거 한 후에 ROI 영역을 추출한다. 추출된 ROI 영역에서 밀도 분포를 분석하기 위하여 히스토그램을 분석한 후에 DBSCAN을 적용하여 초음파 영상에서 결절종 후보에 해당되는 명암도를 추출한다. 추출한 후보 명암도를 대상으로 FCM 클러스터링 기법을 적용한다. FCM을 적용하는 단계에서 결절종의 저에코 혹은 무에코의 특징을 이용하여 클러스터 중심 값이 가장 낮은 클러스터를 양자화 한 후에 라벨링 기법을 적용시켜 결절종의 후보 객체를 추출한다. 제안된 결절종 추출 방법의 성능을 분석하기 위해 전문의가 결절종 영역을 표기한 초음파 영상과 표기되지 않은 초음파 영상 120쌍을 대상으로 DBSCAN, FCM, 그리고 제안된 방법 간의 성능을 비교 분석하였다. 제안된 방법에서는 120개의 초음파 영상에서 106개 결절종 영역이 추출되었고 FCM 기법에서는 80개가 추출되었고 DBSCAN에서는 36개가 추출되었다. 따라서 제안된 방법이 결절종 추출에 효율적인 것을 확인하였다.

  • PDF

Optimized Sigma-Delta Modulation Methodology for an Effective FM Waveform Generation in the Ultrasound System (효율적인 주파수 변조된 초음파 파형 발생을 위한 최적화된 시그마 델타 변조 기법)

  • Kim, Hak-Hyun;Han, Ho-San;Song, Tai-Kyong
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.429-440
    • /
    • 2007
  • A coded excitation has been studied to improve the performance for ultrasound imaging in term of SNR, imaging frame rate, contrast to tissue ratio, and so forth. However, it requires a complicated arbitrary waveform transmitter for each active channel that is typically composed of a multi-bit Digital-to-Analog Converter (DAC) and a linear power amplifier (LPA). Not only does the LPA increase the cost and size of a transmitter block, but it consumes much power, increasing the system complexity further and causing a heating-up problem. This paper proposes an optimized 1.5bit fourth order sigma-delta modulation technique applicable to design an efficient arbitrary waveform generator with greatly reduced power dissipation and hardware. The proposed SDM can provide a required SQNR with a low over-sampling ratio of 4. To this end, the loop coefficients are optimized to minimize the quantization noise power in signal band while maintaining system stability. In addition, the decision level for the 1.5 bit quantizer is optimized for a given input waveform, which results in the SQNR improvement of more than 5dB. Computer simulation results show that the SQNR of a FM(frequency modulated) signal generated by using the proposed method is about 26dB, and the peak side-lobe level (PSL) of its compressed waveform on receive is -48dB.

Effective Adaptive Dynamic Quadrature Demodulation in Medical Ultrasound Imaging

  • Yoon, Heechul;Jeon, Kang-won;Lee, Hyuntaek;Kim, Kyeongsoon;Yoon, Changhan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.468-475
    • /
    • 2018
  • In medical ultrasound imaging, frequency-dependent attenuation downshifts and reduces a center frequency and a frequency bandwidth of received echo signals, respectively. This causes considerable errors in quadrature demodulation (QDM), result in lowering signal-to-noise ratio (SNR) and contrast resolution (CR). To address this problem, adaptive dynamic QDM (ADQDM) that estimates center frequencies along depth was introduced. However, the ADQDM often fails when imaging regions contain hypoechoic regions. In this paper, we introduce a valid region-based ADQDM (VR-ADQDM) method to reject the misestimated center frequencies to further improve SNR and CR. The valid regions are regions where the center frequency decreases monotonically along depth. In addition, as a low-pass filter of QDM, Gaussian wavelet based dynamic filtering was adopted. From the phantom experiments, average SNR improvements of the ADQDM and the VR-ADQDM over the traditional QDM were 1.22 and 5.27 dB, respectively, and the corresponding maximum SNR improvements were 2.56 and 10.58 dB. The contrast resolution of the VR-ADQDM was also improved by 0.68 compared to that of the ADQDM. Similar results were obtained from in vivo experiments. These results indicate that the proposed method would offer promises for imaging technically-difficult patients due to its capability in improving SNR and CR.

Volume Ray Casting for Ultrasound Data Using Real-Time Noise Reduction (초음파 데이터에서 실시간 잡음 감쇄를 이용한 광선 투사법)

  • Seo, Kang-Hee;Kwon, Koo-Joo;Shin, Byeong-Seok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.1623-1626
    • /
    • 2005
  • 초음파 영상 기법은 장기, 연조직, 혈류를 검사하는데 쓰이는 영상 진단법이다. 초음파 장비를 통해 얻어진 초음파 볼륨 데이터는 장비 특성상 많은 잡음(speckle noise)을 포함하기 때문에, 깨끗한 영상을 얻기 위해서는 잡음 필터링(noise filtering)이 필요하다. 그런데, 볼륨 데이터 모든 영역에 대해 잡음 필터링을 적용할 경우 전처리 시간이 길어져 실시간으로 초음파 볼륨 데이터를 렌더링하기 어렵다. 본 논문에서는 실시간으로 입력되는 초음파 볼륨 데이터를 가시화 하기위하여 전처리 시간 없이 잡음을 제거하는 방법을 제안한다. 전처리 시간에 전체 볼륨 데이터에 대해 잡음 필터링을 적용하지 않고, 영상을 생성하는 동안 참조되는 복셀(voxel)에 대해서만 잡음 필터를 적용하여 얻은 값을 사용한다. 이때 필터링에 소요되는 시간을 최소화하기 위해 가장 단순한 평균화 필터를 사용한다. 그리고 복셀에 적용되는 3차원 필터를 3단계의 1차원 필터 연산 단계로 분할 한 후, 각 단계별 연산을 거친 복셀들에 대해서는 다시 연산을 하지 않도록 하여 중복을 피한다. 이를 통해 전처리 시간 없이 기존 방법과 동일한 화질을 유지하는 최종 영상을 만들어 낸다.

  • PDF

Gender Differences in Physiological Effects of a Transient Exposure to Experimental Noise

  • Hyun, Kyung-Yae;Kim, Chong-Rak;Kim, Hwa-Il;Kim, Young-Hwal;Choi, Seok-Cheol
    • Biomedical Science Letters
    • /
    • v.12 no.4
    • /
    • pp.375-383
    • /
    • 2006
  • The physiological responses following stress are different in individual or personality. We performed this study to clarify gender differences in influences of noise stress on physiological factors. 70 healthy subjects, which was divided man (n=30) and woman (n=40) groups, were exposed to 85 decibels of excavator noise for 15 minutes. Cardiac factors such as heart rate (HR), systolic and diastolic blood pressures (SBP and DBP, respectively), and heart rate-systolic pressure product (RPP) were determined. Transcranial Doppler ultrasound (TCD) was used to measure mean blood flow velocity (Vm), pulsatility index (PI), and resistance index (RI) in the middle, anterior and posterior cerebral arteries (MCA, ACA and PCA, respectively) before and during noise exposure. Cortisol level and hematological variables were also measured before (baseline) and immediately after the end of noise exposure. In the both groups HR, SBP, and RPP significantly decreased during noise exposure (P<0.05) but not significantly different between two groups (P>0.05). Vms of three cerebral arteries in man group decreased, whereas Vm of PCA in woman group fell during noise exposure (P<0.05). Vm, PI and RI in MCA and ACA during noise exposure were low in man group compared with woman group (P<0.05). Vm of PCA was low, whereas PI and RI of PCA were high in man group compared with woman group during noise exposure (P<0.05). Total leukocyte and red blood cell (RBC) counts slightly decreased during noise exposure but not significant (P>0.05). Levels in hematological variables decreased but not significant changed following noise exposure. Decreased rate of total leukocyte in man group was higher (P<0.05). Cortisol levels in the both groups decreased immediately after the end of noise exposure, while the decreased rate in man group was greater than that in woman group (p<0.05). These findings indicate that a transient exposure to experimental excavator noise may cause decreased changes in cardiac factors, cerebral hemodynamics and cortisol levels and the changes may be greater in men than in women.

  • PDF

Improvement of an Ultrasonic Transducer for Measuring Both Flow Velocity and Pipe Thickness (유속 및 파이프 두께 측정 겸용 초음파 트랜스듀서 개선)

  • Kim, Ju Wan;Kim, Jin Oh
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.148-156
    • /
    • 2016
  • The paper deals with improvement of a piezoelectric ultrasonic transducer for measuring both pipe thickness and flow velocity. The transducer structure is based on the conventional transducers for measuring flow velocity by obliquely transmitting ultrasonic waves to the flow direction. The transducer invented earlier for measuring flow velocity and pipe thickness had an advantage of including only one piezoelectric disc, but for the thickness measurement the ultrasonic wave had to be reflected twice in a wedge material to be transmitted vertically to a pipe, and thus the wave signal was too weak. The transducer has been improved to transmit waves for thickness measurement vertically to a pipe without any prior reflection by electrically connecting two piezoelectric discs, one for flow velocity and the other for pipe thickness measurement. By comparing the measured results of specimen thickness with the improved transducer and conventional transducers, the accuracies of the improved one have been evaluated in the pipe thickness measurements.

Finite Element Analysis of a Particle Manipulation System Using Ultrasonic Standing Wave (정재초음파를 이용한 입자제어 시스템의 유한요소해석)

  • Cho, Seung-Hyun;Park, Jae-Ha;Ahn, Bong-Young;Kim, Ki-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.3-9
    • /
    • 2010
  • Micro particles in fluid can be manipulated by using ultrasonic standing wave since the ultrasound makes particles move by means of its acoustic radiation force. This work concerns the micro particle manipulation system using ultrasonic standing wave which consists of a microchannel, a reflector, and an ultrasonic transduer. In the present system, the effects of the structural elements should be carefully considered to comprehend the system and find the optimal operational condition. In this investigation, finite element analysis was employed to analyze the system. Some interesting characteristics on the reflector thickness, the channel width, and the operational frequency were observed. Several experimental results were compared with the analytic results. Consequently, this work solidifies the importance of those system parameters and reveals the possibility of various applications of the particle manipulation using ultrasonic standing wave.