• Title/Summary/Keyword: Ultrasound (US)

Search Result 240, Processing Time 0.02 seconds

Effects of Therapeutic Ultrasound on Experimental Induced Rectal Sarcoma(CT-26) (실험적으로 유발된 직장종양에 대한 치료적 초음파의 효과)

  • Cheong, Mee-Sun;Oh, Myoung-Hwa;Kim, Gye-Yeop;Kim, Chan-Kyu
    • Journal of Korean Physical Therapy Science
    • /
    • v.11 no.3
    • /
    • pp.5-13
    • /
    • 2004
  • The use of therapeutic ultrasound(US) in humans with malignant neoplasms has been contra-indicated in physical therapy practice. Some studies have shown the results after application of US inhibited of tumor growth but some studies have shown the results facilitated of tumor growth in mouse. The purpose of this study were to determine the effects of US on rectal sarcoma(CT-26) in mouse and to determine the histological change of tumor. Thirty-five female BALB/C mouse, age 6 to 8 weeks received subcutaneous injection of 0.1 105 tumor cells. When tumors grew to 5 mm in diameters, the mouse were randomly assigned to control group(n=7) and high powered continuous US group(n=7) and low powered continuous US group(n=7) and high powered pulsed US group(n=7) and low powered pulsed US group(n=7). The experimental group (four groups) received 10 treatments over a 10-day period of 3 MHz ultrasound. Tumor dimension were measured on days 1(start of treatment), 5(midtreatment), and 10(end of treatment, preexcision and postexcision). Tumors were weighed after excision and the mouse were observated histological change of tumor. All tumors grew larger over time. Mean tumor weights(in grams) and volumes(in cubic millimeters) were 2.063 g and $2729.313\;mm^3$ for the high powered continuous US group 1.881 g and $2428.002\;mm^3$ for the low powered continuous US group 1.730 g and $2381.002\;mm^3$ for the high powered pulsed US 1.673 g and $2289.562\;mm^3$ for the low powered pulsed US group 1.670 g and $2297.333\;mm^3$ for the control group. Ultrasound increased the weight and volume of subcutaneous tumor in mouse. We urge caution in the use of ultrasound in the areas of tumors.

  • PDF

Breast Ultrasound Microvascular Imaging and Radiogenomics

  • Ah Young Park;Bo Kyoung Seo;Mi-Ryung Han
    • Korean Journal of Radiology
    • /
    • v.22 no.5
    • /
    • pp.677-687
    • /
    • 2021
  • Microvascular ultrasound (US) techniques are advanced Doppler techniques that provide high sensitivity and spatial resolution for detailed visualization of low-flow vessels. Microvascular US imaging can be applied to breast lesion evaluation with or without US contrast agents. Microvascular US imaging without a contrast agent uses a sophisticated wall filtering system to selectively obtain low-flow Doppler signals from overlapped artifacts. Microvascular US imaging with second-generation contrast agents amplifies flow signals and makes them last longer, which facilitates hemodynamic evaluation of breast lesions. In this review article, we will introduce various microvascular US techniques, explain their clinical applications in breast cancer diagnosis and radiologic-histopathologic correlation, and provide a summary of a recent radiogenomic study using microvascular US.

The Use of Contrast-Enhanced Color Doppler Ultrasound in the Differentiation of Retinal Detachment from Vitreous Membrane

  • Sang-Suk Han;Seung-Kook Chang;Jung-Hee Yoon;Young-Joon Lee
    • Korean Journal of Radiology
    • /
    • v.2 no.4
    • /
    • pp.197-203
    • /
    • 2001
  • Objective: To compare the clinical utility of contrast-enhanced color Doppler US in the differentiation of retinal detachment (RD) from vitreous membrane (VM) with that of various conventional US modalities, and to analyze the enhancement patterns in cases showing an enhancement effect. Materials and Methods: In 32 eyes examined over a recent two-year period, RD (n=14) and VM (n=18) were confirmed by surgery (n=28) or clinical follow-up (n=4). In all cases, gray-scale, color Doppler, and power Doppler US were performed prior to contrast injection, and after the intravenous injection of Levovist (Schering, Berlin) by hand for 30 seconds at a dose of 2.5 g and a concentration of 300 mg/mL via an antecubital vein, contrast-enhanced color Doppler US was performed. At Doppler US, the diagnostic criterion for RD and VM was whether or not color signals were visualized in membranous structures. Results: Diagnostic accuracy was 78% at gray-scale US, 81% at color Doppler US, 59% at power Doppler US, and 97% at contrast-enhanced color Doppler US. The sensitivity of color Doppler US to color signals in RD increased from 57% to 93% after contrast enhancement. The enhancement patterns observed were signal accentuation (n=3), signal extension (n=2), signal addition (n=3), and new signal visualization (n=5). Conclusion: Contrast-enhanced color Doppler US was the most accurate US modality for differentiating RD from VM, showing a significantly increased signal detection rate in RD.

  • PDF

Caudal and epidural blocks in infants and small children: historical perspective and ultrasound-guided approaches

  • Kil, Hae Keum
    • Korean Journal of Anesthesiology
    • /
    • v.71 no.6
    • /
    • pp.430-439
    • /
    • 2018
  • In infants and small children, ultrasound (US) guidance provides ample anatomical information to perform neuraxial blocks. We can measure the distance from the skin to the epidural space in the US image and can refer to it during needle insertion. We may also visualize the needle or a catheter during real-time US-guided epidural catheterization. In cases where direct needle or catheter visualization is difficult, US allows predicting successful puncture and catheterization using surrogate markers, such as dura mater displacement, epidural space widening due to drug injection, or mass movement of the drug within the caudal space. Although many experienced anesthesiologists still prefer to use conventional techniques, prospective randomized controlled trials using US guidance are providing increasing evidence of its advantages. The use of US-guided regional block will gradually become widespread in infants and children.

A Study of the Development for Fatty Liver Quantification Diagnostic Technology from Ultrasound Images using a Simulated Fatty Liver Phantom (모사 지방간 팬텀을 활용한 초음파영상에서 지방간 정량화 진단 기술 개발을 위한 연구)

  • Yei-Ji Lim;Seung-Man Yu
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.2
    • /
    • pp.135-144
    • /
    • 2024
  • Ultrasonography examination has limitations in quantifying hepatic fat quantification. Therefore, this study aimed to experimentally demonstrate whether changes in signal attenuation during ultrasound imaging can be quantified using simulated hepatic phantoms to assess hepatic fat content. Additionally, we aimed to evaluate the potential of ultrasound imaging for diagnosing hepatic fatty liver by analyzing the relationship between hepatic fat content and signal intensity in ultrasound images. In this study, we developed a total of five stimulated hepatic phantoms by homogeneously mixing water and oil. We confirmed the fat content of the phantoms using magnetic resonance imaging (MRI) and ultrasound imaging, and measured signal intensity according to distance in ultrasound images to analyze the correlation and mean comparison between fat content and signal intensity. We observed that as the fat content increased, the ultrasound penetration intensity decreased, confirming the potential for quantifying hepatic fat content using ultrasound. Additionally, the analysis of the correlation between the measured fat content using MRI and the signal intensity measured in ultrasound images showed a high correlation. Statistical analysis in our study confirmed that as the fat content increased, the slope representing signal during ultrasound imaging (US-GRE) decreased. In this study, it was statistically confirmed that the US-GRE value of ultrasound images gradually decreases as the fat content increases, and it is believed that US-GRE can serve as a biomarker expressing fatty liver content.

Ultrasound Score to Select Subcentimeter-sized Thyroid Nodules Requiring Ultrasound-guided Fine Needle Aspiration Biopsy in Eastern China

  • Cheng, Pu;Chen, En-Dong;Zheng, Hua-Min;He, Qiu-Xiang;Li, Quan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4689-4692
    • /
    • 2013
  • Ultrasound-guided fine needle aspiration biopsy (FNAB) is a costly diagnostic item with a low yield in identifying the tiny proportion of nodules that actually represent malignant disease. Our aim through this study was to obtain an ultrasound (US) score for selecting subcentimeter-sized thyroid nodules requiring FNAB in eastern China. Some 248 patients for a total of 270 thyroid nodules less than 1 cm in diameter underwent FNAB and subsequent surgery from January 2006 to March 2012 at our hospital. The clinicopathological and US data from all the nodules were analyzed retrospectively. An US score was developed on the basis of independent predictive factors for malignancy. Irregular shape, hypoechogenicity, no well-defined margin, presence of calcifications and ratio between antero-posterior and transversal diameters (AP/TR) ${\geq}1$ were independent predictive factors for malignancy on logistic regression analysis. US score were statistically significant, with ${\leq}2$ favoring benignancy with an 80.3% sensitivity and a 72.7% specificity. US score is useful for differentiating between malignant and benign subcentimeter-sized thyroid nodules. We suggest FNAB for nodules when the US score is higher than 2.

Musculoskeletal Ultrasound Application in Cervical Spine: Pictorial Essay (경추부의 초음파 적용: 임상화보)

  • Yoon, Yong-Soon;Lee, Jung-Hoo;Kim, Eun-Sil;Lee, Kwang Jae
    • Clinical Pain
    • /
    • v.20 no.2
    • /
    • pp.74-85
    • /
    • 2021
  • Ultrasound (US) can depict of various anatomical structures, such as muscles, tendons, ligaments, nerve roots, and vessels, around the neck. The usage of US around the neck is increasing due to its quick and easy application for guided injection for nerves, tendons, and joints. This article elaborates the degenerative diseases causing neck pain, sonoanatomy, and the use of US for diagnosis and intervention; for example, small nerves around the neck, cervical root, stellate ganglion, medial branches, greater occipital nerve (GON), and third occipital nerve (TON). The aim of this review article is to lead readers to understand the anatomy around the neck and structural relations, and to get to know about several US-guided intervention of the neck.

Beyond BI-RADS: Nonmass Abnormalities on Breast Ultrasound

  • Hiroko Tsunoda;Woo Kyung Moon
    • Korean Journal of Radiology
    • /
    • v.25 no.2
    • /
    • pp.134-145
    • /
    • 2024
  • Abnormalities on breast ultrasound (US) images which do not meet the criteria for masses are referred to as nonmass lesions. These features and outcomes have been investigated in several studies conducted by Asian researchers. However, the term "nonmass" is not included in the American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS) 5th edition for US. According to the Japan Association of Breast and Thyroid Sonology guidelines, breast lesions are divided into mass and nonmass. US findings of nonmass abnormalities are classified into five subtypes: abnormalities of the ducts, hypoechoic areas in the mammary glands, architectural distortion, multiple small cysts, and echogenic foci without a hypoechoic area. These findings can be benign or malignant; however, focal or segmental distributions and presence of calcifications suggest malignancy. Intraductal, invasive ductal, and lobular carcinomas can present as nonmass abnormalities. For the nonmass concept to be included in the next BI-RADS and be widely accepted in clinical practice, standardized terminologies, an interpretation algorithm, and outcome-based evidence are required for both screening and diagnostic US.

Effects of Continuous Therapeutic Ultrasound on Subcutaneous Murine Melanoma (초음파치료가 종양세포에 미치는 효과)

  • Kim, Ji-Won;Lee, Kuk-Il;Han, Jae-Mun
    • Physical Therapy Korea
    • /
    • v.4 no.1
    • /
    • pp.11-19
    • /
    • 1997
  • The use of therapeutic ultrasound(US) in humans with malignant neoplasms has been contraindicated in physical therapy practice. Some studies have shown that results after application of US differ according to tumor type and penetration depth. The purposes of this study were to determine the effects of US on melanoma in mice and to determine treatment dosage. Twenty-four female C57BL/6 mice, age 8 weeks. The right flank of all mice was shaved, and a 0.1 ml suspension of cells was injected subcutaneously into the animals' right flank. In this study, 24 subjects were randomly divided into three groups: experimental group 1(n=8), experimental group 2(n=8), control group(n=8). In the experimental group 1, animals received continuous 3 MHZ US treatment, administered at $2.0W/cm^2$ for five minutes. In experimental group 2, animals received continuous 3 MHz US treatment, administered at $1.0W/cm^2$ for 5 minutes. The control group received the same handling as other experimental groups, including rodent chow, water, US gel application but US head pressure without the power turned on. After 10 days treatment, all mice were killed with a potassium solution. Tumors were excised and weighed on an electrical balance and fixed in a 10% neutral buffered formalin solution. Tumor weights were smaller in experimental group 2(0.3838 g) than in the control group(0.6275 g). Tumor weights of the experimental group 1(0.015 g) were smaller than those of experimental group 2. Continuous therapeutic US decreased the weight of subcutaneous melanoma tumors in mice. The treatment dosage($2.0W/cm^2$) we suggest was more effective than earlier studies on decreasing tumor size with ultrasound.

  • PDF

The Utility of Emergency Ultrasound for Diagnosing Wrist and Ankle Injuries (손목 관절과 발목 관절 손상 환자의 진단에 있어 응급 초음파의 유용성)

  • Lee, Sung Sil;Kim, Dong Un;Park, Deuk Hyun;Cho, Hyun Young;Ahn, Seung Jun;Kho, Chan Young;Shin, Tae Yong;Kim, Young Sik;Ha, Young Rock
    • Journal of Trauma and Injury
    • /
    • v.20 no.2
    • /
    • pp.130-137
    • /
    • 2007
  • Purpose: Ultrasound is of proven accuracy in abdominal and thoracic trauma and may be useful for diagnosing extremity injury in situations where radiography is not available, such as disasters and military and space applications. However, the diagnosis of fractures is suggested by history and physical examination and is typically confirmed with radiography. As a alternative to radiography, we prospectively evaluated the utility of extremity ultrasound performed by trained residents of emergency medicine (EM) one patient with wrist and ankle extremity injuries. Methods: Initially, residents of EM performed physical examinations for fractures. The emergency ultrasound (EM US) was performed by trained residents, who used a portable ultrasound device with a 10- to 5-MHz linear transducer, on suspected patients before radiography examination. The results of emergency ultrasound and radiography and the final diagnosis were recorded, and correlation among them were determined by using Kappa s test Results: Thirty-nine patients were enrolled in our study. The average age was $36.6\;{\pm}\;19.3$ years. There were radius Fx. (n=21), radius-ulna Fx. (n=1), ulna Fx. (n=1), and contusion (n=2) injuries among the wrist injury and lat.-med. malleolar Fx. (n=13), lat. malleolar Fx. (n=6), and med. malleolar Fx. (n=3) injuries among the ankle injury. Comparing EM US with radiography, we found the sensitivity, specificity, positive predictive value, and negative predictive value of EM US for Fx. diagnosis to be 100%, 66.7%, 97.3%, 100% and those of radiography to be 97.2%, 100%, 100%, and 75%, respectively. Kappa s test for a correlation between the Fx. diagnosis of EM US and the final diagnosis of Fx was performed, and Kappa's value was 0.787 (P = 0.004).Conclusion: EM US for Fx. can be performed quickly and accurately by EM residents with excellent accuracy in remote locations such as disaster areas and in military and aerospace applications. EM US was as useful as radiography in our study and had a high correlation to the final diagnosis of Fx. Therefore, ultrasound should performed on patients with extremity injury to determine whether extremity evaluation should be added to the FAST (focused abdominal sonography trauma) examination.