• Title/Summary/Keyword: Ultrasonic nondestructive testing

Search Result 552, Processing Time 0.025 seconds

Application of Generalized Lamb Wave for Evaluation of Coating Layers

  • Kwon, Sung-Duk;Kim, Hak-Joon;Song, Sung-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.3
    • /
    • pp.224-230
    • /
    • 2007
  • This work is aimed to explore a possibility of using the generalized Lamb waves for nondestructive evaluation of the bonding quality of layered substrates. For this purpose, we prepared two sets of specimens with imperfect bonding at their interfaces; 1) TiN-coated specimens with various wear conditions, and 2) CVD diamond specimens with various cleaning conditions. A dispersion simulation performed for layered substrates with imperfect interfaces are carried out to get the characteristics of dispersion curves that can be used for bonding quality evaluation. Then the characteristics of dispersion curves of the fabricated specimens are experimentally determined by use of an ultrasonic backward radiation measurement technique. The results obtained in the present study show that the lowest velocity mode (Rayleigh-like) of the generalized Lamb waves are sensitively affected by the bonding quality. Therefore, the generalized Lamb waves can be applied for nondestructive evaluation of imperfect bonding quality in various layered substrates.

A study on Computer-controlled Ultrasonic Scanning Device (컴퓨터제어에 의한 자동초음파 탐상장치에 관한 연구)

  • Huh, H.;Park, C.S.;Hong, S.S.;Park, J.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.9 no.1
    • /
    • pp.30-38
    • /
    • 1989
  • Since the nuclear power plants in Korea have been operated in 1979, the nondestructive testing (NDT) of pressure vessels and/or piping welds plays an important role for maintaining the safety and integrity of the plants. Ultrasonic method is superior to the other NDT method in the viewpoint of the detectability of small flaw and accuracy to determine the locations, sizes, orientations, and shapes. As the service time of the nuclear power plants is increased, the radiation level from the components is getting higher. In order to get more quantitative and reliable results and secure the inspector from the exposure to high radiation level, automation of the ultrasonic equipments has been one of the important research and development(R & D) subject. In this research, it was attempted to visualize the shape of flaws presented inside the specimen using a Modified C-Scan technique. In order to develope Modified C-Scan technique, an automatic ultrasonic scanner and a module to control the scanner were designed and fabricated. IBM-PC/XT was interfaced to the module to control the scanner. Analog signals from the SONIC MARK II were digitized by Analog-Digital Converter(ADC 0800) for Modified C-Scan display. A computer program has been developed and has capability of automatic data acquisition and processing from the digital data, which consist of maximum amplitudes in each gate range and locations. The data from Modified C-Scan results was compared with shape from artificial defects using the developed system. Focal length of focused transducer was measured. The automatic ultrasonic equipment developed through this study is essential for more accurate, reliable, and repeatable ultrasonic experiments. If the scanner are modified to meet to appropriate purposes, it can be applied to automation of ultrasonic examination of nuclear power plants and helpful to the research on ultrasonic characterization of the materials.

  • PDF

Measurement of Elastic Constants by Simultaneously Sensing Longitudinal and Shear Waves as an Overlapped Signal

  • Seo, Hogeon;Song, Dong-Gi;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.2
    • /
    • pp.138-148
    • /
    • 2016
  • Measurement of elastic constants is crucial for engineering aspects of predicting the behavior of materials under load as well as structural health monitoring of material degradation. Ultrasonic velocity measurement for material properties has been broadly used as a nondestructive evaluation method for material characterization. In particular, pulse-echo method has been extensively utilized as it is not only simple but also effective when only one side of the inspected objects is accessible. However, the conventional technique in this approach measures longitudinal and shear waves individually to obtain their velocities. This produces a set of two data for each measurement. This paper proposes a simultaneous sensing system of longitudinal waves and shear waves for elastic constant measurement. The proposed system senses both these waves simultaneously as a single overlapped signal, which is then analyzed to calculate both the ultrasonic velocities for obtaining elastic constants. Therefore, this system requires just half the number of data to obtain elastic constants compared to the conventional individual measurement. The results of the proposed simultaneous measurement had smaller standard deviations than those in the individual measurement. These results validate that the proposed approach improves the efficiency and reliability of ultrasonic elastic constant measurement by reducing the complexity of the measurement system, its operating procedures, and the number of data.

Sensitive NDE of Small Fatigue Cracks

  • Saka, Masumi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.22-31
    • /
    • 2001
  • Some techniques developed recently for sizing smalt fatigue cracks are described. One is an ultrasonic technique which deals with a small closed crack, where both the stress closing the crack and the crack size are determined by analyzing inverse problem. Here, difficulties encountered in NDE of closed cracks by usual ultrasonic techniques are summarized in advance. Secondly, the closely coupled probes potential drop (CCPPD) technique, which is based on d-c potential drop measurement, is explained fur sizing small cracks. The CCPPD technique is not affected by crack closure. Finally, a discussion is given on NDE of materials degradation in conjunction with sensitive NDE of small cracks.

  • PDF

Development of Ultrasonic Testing System for Piping Welds (배관 용접부 초음파검사 시스템 개발)

  • Choi, Sung-Nam;Kim, Hyung-Nam;Yoo, Hyun-Ju;Cho, Hyun-Jun;Hwang, Won-Gul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.4
    • /
    • pp.331-338
    • /
    • 2008
  • Ultrasonic testing for welds is widely used to ensure the integrity of facilities in NPPs. Automated ultrasonic testing(AUT) is more consistent than the manual ultrasonic testing(MUT). It can scan welded parts, examines the scanned images, and saves the results as data files. AUT in NPPs is making use of commercial systems, and there has been some difficulties in calibration of the system. An AUT system is developed. It comprises of pulser/receiver, scanner and a control program(SonicWizard). The performance demonstration for piping welds in NPPs and the piping wall thickness measurement on site were conducted to verify this system. The test results of the ultrasonic testing system developed is satisfactory and effective.

Development of Ultrasonic Testing System for In-Service Inspection of the Shrunk-on Type LP Turbine Roter (Shrunk-on Type 저압 터빈 로터의 가동중검사를 위한 초음파검사 시스템 개발)

  • Park, Joon-Soo;Seong, Un-Hak;Ryu, Sung-Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.2
    • /
    • pp.130-136
    • /
    • 2009
  • Turbine, which is one of major components in nuclear power plants, requires reliable nondestructive inspections. But, accessibility of transducers is limited and interpretation of acquired signals is not easy at all due to the complication. So, in this study, we have fabricated mock-up specimens of real size and shape. we applied pulse-echo method and time-of-flight diffraction(TOFD) method for precise inspection of turbine key and wheel bore. And phased array ultrasonic testing method was adopted for wheel dovetail of turbines by using mock-up. Furthermore, an automatic scanner system was developed for in-service inspection of the developed methods.

Development of MFL Testing System for the Inspection of Storage Tank Floor (저장탱크 바닥면 검사를 위한 누설자속 탐상 시스템 개발)

  • Won, Soon-Ho;Cho, Kyung-Shik;Lee, Jong-O;Chang, Hong-Keun;Joo, Gwang-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.38-44
    • /
    • 2002
  • MFL method is a qualitative inspection tool and is a reliable, fast and economical NDT method. The application of MFL method to the inspection of storage tank floor plates has been shown to be a viable means. Examination of tank floors previously depended primarily upon ultrasonic test methods that required slow and painstaking application. Therefor most ultrasonic inspection of storage tank has been limited to spot testing only. Our NDE group have developed magnetic flux leakage system to overcome limitation of ultrasonic test. The developed system consists of magnetic yoke, array sensor, crawler and software. It is proved that the system is able to detect artificial flaw like 3.2mm diameter, 1.2mm depth in 6mm thick steel plate.

An Onboard Measurement System of Ultrasonic Velocity and Attenuation using the Wavelet Transform

  • Cho, Seog-bin;Ha, Sung-kil;Jung, Sung-Yun;Baek, Kwang-ryul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1826-1828
    • /
    • 2004
  • In this paper, we present an ultrasonic velocity and attenuation measurement system. There are many ultrasonic measurement methods that are used in nondestructive testing applications. They include material property determination, microstructural characterization, and flaw detection. Ultrasonic parameters such as velocity and attenuation are most commonly used in them. Advanced signal analysis which is called "ime-frequency analysis"has been used widely in nondestructive evaluation applications. Wavelet transform is the most advanced technique for processing signals with time-varying spectra. Using the echo waveform gathered by the designed hardware system, we performed simulation of the signal processing algorithms. Then the algorithm is implemented on the system.

  • PDF

Rail Inspection Using Noncontact Laser Ultrasonics

  • Kim, Nak-Hyeon;Sohn, Hoon;Han, Soon-Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.696-702
    • /
    • 2012
  • In this study, a noncontact laser ultrasonic system is proposed for rail defect detection. An Nd-Yag pulse laser is used for generation of ultrasonic waves, and the corresponding ultrasonic responses are measured by a laser Doppler vibrometer. For the detection of rail surface damages, the shape of the excitation laser beam is transformed into a line. On the other hand, a point source laser beam is used for the inspection of defects inside a rail head. Then, the interactions of propagating ultrasonic waves with defects are examined using actual rail specimens. Amplitude attenuation was mainly observed for a surface crack, and reflections were most noticeable from an internal damage. Finally, opportunities and challenges associated with real-time rail inspection from a high-speed train are discussed.

Influence of Dislocation Substructure on Ultrasonic Velocity under Tensile Deformation

  • Kim, C.S.;Lissenden, Cliff J.;Kang, Kae-Myhung;Park, Ik-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.6
    • /
    • pp.477-482
    • /
    • 2008
  • The influence of dislocation substructure of metallic materials on ultrasonic velocity has been experimentally investigated. The test materials of pure Cu, brass (Cu-35Zn), 2.25Cr-1Mo steel, and AISI 316 with different stacking fault energy (SFE) are plastically deformed in order to generate dislocation substructures. The longitudinal wave velocit $(C_L)$ decreases as a function of tensile strain in each material. The $C_L$ of Cu-35Zn and AISI 316 decreases monotonously with tensile strain, but $C_L$ of Cu and 2.25Cr-1Mo steel shows plateau phenomena due to the stable dislocation substructure. The variation of ultrasonic velocity with the extent of dislocation damping and dislocation substructures is discussed.