• Title/Summary/Keyword: Ultrasonic method

Search Result 2,078, Processing Time 0.026 seconds

In-vitro and In-vivo Biocompatibility Evaluation of Silica Based Bio-active Glass Prepared by Hydrothermal Method

  • Sarkar, Swapan Kumar;Nguyen, Phuong Thi;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.53.1-53.1
    • /
    • 2011
  • Bioactive glass powders were synthesized by hydrothermal chemical route by the use of ultrasonic energy irradiation. We used sodalime, calcium nitrate tetra hydrate and di ammonium hydrogen phosphate as the precursor material to synthesize $SiO_2$ rich bio-active glass materials. The $SiO_2$ content was varied in the precursor mixture to 60, 52 and 45 mole%. Dense compacts were obtained by microwave sintering at $1,100^{\circ}C$. Mechanical properties were characterized for the fabricated dense bioactive glasses and were found to be comparable with conventional CaO-$SiO_2$-$Na_2O$-$P_2O_5$ bioactive glass. Detailed biocompatibility evaluation of the glass composition was investigated by in-vitro culture of MG-63 cell and mesenchyme stem cell. Cell adhesion behavior was investigated for both of the cell by one cell morphology for 30, 60 and 90 minutes. Cell proliferation behavior was investigated by culturing both of the cells for 1, 3 and 7 days and was found to be excellent. Both SEM and confocal laser scanning microscopy were used for the investigation. Western blot analysis was performed to evaluate the bimolecular level interaction and extent and rate of specific protein expression. The ability to form biological apatite in physiological condition was observed with simulated body fluid (SBF). In-vivo bone formation behavior was investigated after implanting the materials inside rabbit femur for 1 and 3 month. The bone formation behavior was excellent in all the bioglass compositions, specially the composition with 60% $SiO_2$ content showed most promising trend.

  • PDF

Delamination and concrete quality assessment of concrete bridge decks using a fully autonomous RABIT platform

  • Gucunski, Nenad;Kee, Seong-Hoon;La, Hung;Basily, Basily;Maher, Ali
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.1
    • /
    • pp.19-34
    • /
    • 2015
  • One of the main causes of a limited use of nondestructive evaluation (NDE) technologies in bridge deck assessment is the speed of data collection and analysis. The paper describes development and implementation of the RABIT (Robotics Assisted Bridge Inspection Tool) for data collection using multiple NDE technologies. The system is designed to characterize three most common deterioration types in concrete bridge decks: rebar corrosion, delamination, and concrete degradation. It implements four NDE technologies: electrical resistivity (ER), impact echo (IE), ground-penetrating radar (GPR), and ultrasonic surface waves (USW) method. The technologies are used in a complementary way to enhance the interpretation. In addition, the system utilizes advanced vision to complement traditional visual inspection. Finally, the RABIT collects data at a significantly higher speed than it is done using traditional NDE equipment. The robotic system is complemented by an advanced data interpretation. The associated platform for the enhanced interpretation of condition assessment in concrete bridge decks utilizes data integration, fusion, and deterioration and defect visualization. This paper concentrates on the validation and field implementation of two NDE technologies. The first one is IE used in the delamination detection and characterization, while the second one is the USW method used in the assessment of concrete quality. The validation of performance of the two methods was conducted on a 9 m long and 3.6 m wide fabricated bridge structure with numerous artificial defects embedded in the deck.

The Analysis of heating performance of heat pump system for agricultural facility using underground air in Jeju area - Focused on the Jeju Area - (제주지역 지하공기를 이용한 농업시설용 히트펌프시스템의 난방 성능 분석 - 제주지역을 중심으로 -)

  • Kang, Youn-Ku;Lim, Tae-Sub
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.109-114
    • /
    • 2016
  • Purpose: The underground air is the warm air discharged from the porous volcano bedrock 30-50m underground in Jeju, including excessive humidity. The temperature of the underground air is $15-20^{\circ}C$ throughout the year. In Jeju, the underground air was used for heating greenhouses by supplying into greenhouses directly. This heating method by supplying the underground air into greenhouses directly had several problems. The study was conducted to develop the heat pump system using underground air as heat source for resolving excessive humidity problem of the underground air, adopting the underground air as a farm supporting project by Ministry of Agriculture, Food and Rural Affairs(MAFRA) and saving heating cost for agricultural facilities. Method: 35kW scale(10 RT) heat pump system using underground air installed in a greenhouse of area $330m^2$ in Jeju-Special Self-Governing Province Agricultural Research & Extension Services, Seogwipo-si, Jeju. The inlet and outlet water temperature of the condenser, the evaporator and the thermal storage tank and the underground air temperature and the air temperature in the greenhouse were measured by T type thermocouples. The data were collected and saved in a data logger(MV200, Yokogawa, Japan). Flow rates of water flowing in the condenser, the evaporator and the thermal storage tank were measured by an ultrasonic flow meter(PT868, Panametrics, Norway). The total electric power that consumed by the system was measured by a wattmeter(CW240, Yokogawa, Japan). Heating COP, rejection heat of condenser, extraction heat of evaporator and heating cost were analyzed. Result: The underground air in Jeju was adopted as a farm supporting project by Ministry of Agriculture, Food and Rural Affairs(MAFRA) in 2010. From 2011, the heat pump systems using underground air as a heat source were installed in 12 farms(16.3ha) in Jeju.

Determination of Impact Source Location Using a Single Transducer and Time Reversal Technique (단일센서와 시간역전법을 이용한 판에서의 충격위치 결정에 관한 연구)

  • Jeong, Hyun-Jo;Cho, Sung-Jong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.1
    • /
    • pp.47-55
    • /
    • 2012
  • A structural health monitoring technique for locating impact position in a plate structure is presented in this paper. The method employs a single sensor and spatial focusing of time reversal (TR) acoustics. We first examine the TR focusing effect at the impact position and its surroundings through simulation and experiment. The imaging results of impact points show that the impact source location can be accurately estimated in any position of the plate. Compared to existing techniques for locating impact or acoustic emission source, the proposed method has the benefits of using a single sensor and not requiring material properties and geometry of structures. Furthermore, it does not depend on a particular mode of dispersive Lamb waves that is frequently used in other ultrasonic testings of plate-like structures.

Transform Domain Adaptive Filtering with a Chirp Discrete Cosine Transform LMS (CDCTLMS를 이용한 변환평면 적응 필터링)

  • Jeon, Chang-Ik;Yeo, Song-Phil;Chun, Kwang-Seok;Lee, Jin;Kim, Sung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.8
    • /
    • pp.54-62
    • /
    • 2000
  • Adaptive filtering method is one of signal processing area which is frequently used in the case of statistical characteristic change in time-varing situation. The performance of adaptive filter is usually evaluated with complexity of its structure, convergence speed and misadjustment. The structure of adaptive filter must be simple and its speed of adaptation must be fast for real-time implementation. In this paper, we propose chirp discrete cosine transform (CDCT), which has the characteristics of CZT (chrip z-transform) and DCT (discrete cosine transform), and then CDCTLMS (chirp discrete cosine transform LMS) using the above mentioned algorithm for the improvement of its speed of adaptation. Using loaming curve, we prove that the proposed method is superior to the conventional US (normalized LMS) algorithm and DCTLMS (discrete cosine transform LMS) algorithm. Also, we show the real application for the ultrasonic signal processing.

  • PDF

Performance and Analysis of Linear Prediction Algorithm for Robust Localization System (앰비언트 디스플레이 위치추적 시스템의 데이터 손실에 대한 선형 예측 알고리즘 적용 및 분석)

  • Kim, Joo-Youn;Yun, Gi-Hun;Kim, Keon-Wook;Kim, Dae-Hee;Park, Soo-Jun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.4
    • /
    • pp.84-91
    • /
    • 2008
  • This paper suggests the robust localization system in the application of ambient display with multiple ultrasonic range sensors. The ambient display provides the interactive image and video to improve the quality of life, especially for low mobility elders. Due to the limitation of indoor localization, this paper employs linear prediction algorithm to recover the missing information based on AR(Autoregressive) model by using Yule-Walker method. Numerous speculations from prediction error and computation load are considered to decide the optimal length of referred data and order. The results of these analyses demonstrate that the linear prediction algorithm with the 16th order and 50 reference data can improve reliability of the system in average 74.39% up to 97.97% to meet the performance of interactive system.

Influence of Manufacturing Conditions for the Life Time of the Boron-Doped Diamond Electrode in Wastewater Treatment (폐수처리용 붕소 도핑 다이아몬드 전극의 수명에 미치는 제조공정 변수의 영향)

  • Choi, Yong-Sun;Lee, Young-Ki;Kim, Jung-Yuel;Kim, Kyeong-Min;Lee, You-Kee
    • Korean Journal of Materials Research
    • /
    • v.27 no.3
    • /
    • pp.137-143
    • /
    • 2017
  • Boron-doped diamond (BDD) electrode has an extremely wide potential window in aqueous and non-aqueous electrolytes, very low and stable background current and high resistance to surface fouling due to weak adsorption. These features endow the BDD electrode with potentially wide electrochemical applications, in such areas as wastewater treatment, electrosynthesis and electrochemical sensors. In this study, the characteristics of the BDD electrode were examined by scanning electron microscopy (SEM) and evaluated by accelerated life test. The effects of manufacturing conditions on the BDD electrode were determined and remedies for negative effects were noted in order to improve the electrode lifetime in wastewater treatment. The lifetime of the BDD electrode was influenced by manufacturing conditions, such as surface roughness, seeding method and rate of introduction of gases into the reaction chamber. The results of this study showed that BDD electrodes manufactured using sanding media of different sizes resulted in the most effective electrode lifetime when the particle size of alumina used was from $75{\sim}106{\mu}m$ (#150). Ultrasonic treatment was found to be more effective than polishing treatment in the test of seeding processes. In addition to this, BDD electrodes manufactured by introducing gases at different rates resulted in the most effective electrode lifetime when the introduced gas had a composition of hydrogen gas 94.5 vol.% carbon source gas 1.6 vol.% and boron source gas 3.9 vol.%.

A Study of Automation for Examination Analysis of Inservice Inspection for Nuclear Power Plant (I) (원자력발전소(原子力發電所) 가동중(稼動中) 검사(檢査)의 시험분석(試驗分析)을 위한 자동화연구(自動化硏究) (I))

  • Kim, W.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.5 no.1
    • /
    • pp.34-47
    • /
    • 1985
  • The developing country, KOREA where does not possess the natural resources for traditional energy such as oil and gas, so. The nuclear energy is the most single reliable source available for closing the energy gap. For these reason, It is inavoidable to construct the nuclear power plant and to develop technology related nuclear energy. The rate of operation in large nuclear power facilities depends upon the performance of work system through design and construction, and also the applied technology. Especially, it is the most important element that safety and reliability in operation of nuclear power plant. In view of this aspects, Nuclear power plant is performed severe examinations during preservice and inservice inspection. This study provide an automation of analysis for volumetric examination which is required to nuclear power plant components. It is composed as follows: I. Introduction II. Inservice Inspection of Nuclear Power Plant ${\ast}$ General Requirement. ${\ast}$ Principle and Methods of Ultrasonic Test. ${\ast}$ Study of Flaw Evaluation and Design of Classifying Formula for Flaws. III. Design of Automation for Flaw Evaluation. IV. An Example V. Conclusion In this theory, It is classifying the flaws, the formula of classifying flaws and the design of automation that is the main important point. As motioned the above, Owing to such as automatic design, more time could be allocated to practical test than that of evaluation of defects, Protecting against subjective bias tester by himself and miscalculation by dint of various process of computation. For the more, adopting this method would be used to more retaining for many test data and comparative evaluating during successive inspection intervals. Inspite of limitation for testing method and required application to test components, it provide useful application to flow evaluation for volumetric examination. Owing to the characteristics of nuclear power plant that is highly skill intensive industry and has huze system, the more notice should be concentrated as follows. Establishing rational operation plan, developing various technology, and making the newly designed system for undeveloped sector.

  • PDF

Positioning Algorithm Based on the Information of Range-Data Reliability (거리 데이터 신뢰도 정보 기반 위치 검출 알고리즘)

  • Koo, In-Soo;Xuan, Cong Tran;Kim, Eun-Chan;Choi, Sung-Soo
    • Journal of Internet Computing and Services
    • /
    • v.9 no.4
    • /
    • pp.51-59
    • /
    • 2008
  • In wireless sensor networks, one of most common location detection methods that do not require additional devices such as GPS and ultrasonic sensor, is the location detection method based on received signal strength. However, measured received signal strength will fluctuate over time mainly due to physical radio channel characteristics between nodes, which subsequently will cause errors to measured distance between nodes. Since these contaminated distance data are utilized to detect the location of unknown node, there will be accumulated errors in the location of unknown node. In order to overcome the limitation of the location detection method based on received signal strength, we propose a location scheme in which reliability information of distance data as well as distance data between nodes are utilized to estimate the location of unknown node. Through simulation, it is shown that the proposed scheme can accomplish 30% capacity improvement.

  • PDF

Development of Content Analysis for Cyperus rotundus by HPLC-UV and a Comparison between Chinese and Domestic Cyperi Rhizoma (HPLC-UV 방법을 이용한 향부자 분석법 개발과 국산 및 중국산 향부자의 패턴비교)

  • Seo, Jiyun;Kim, Jinah;Kim, Sungun;Liu, Ting;Whang, Wan Kyunn
    • YAKHAK HOEJI
    • /
    • v.56 no.5
    • /
    • pp.280-287
    • /
    • 2012
  • A high-performance liquid chromatography (HPLC) combined with ultraviolet (UV) method for the simultaneous determination of ${\alpha}$-cyperone and nootkatone was developed for the quality control of Cyperus rotundus Linne. The separation was performed on a KR100-$5C_{18}$ ($4.6{\times}250mm$) column, and an elution gradient composed of methanol and water with a flow-rate of 1.0 ml/min. Detection wavelength was set at 254 nm. The optimum extraction for the detection of the ${\alpha}$-cyperone and nookatone was achieved by ultrasonic with methanol for an hour. Two marker compounds ${\alpha}$-cyperone and nootkatone in Cyperi Rhizoma showed good linearity ($R^2$ >0.999) in the concentration range of $12.5{\mu}g/ml$ to $200{\mu}g/ml$. The developed method provided satisfactory precision and accuracy with overall intra-day and inter-day variations of 0.04~1.23% and 0.08~0.68%, respectively, and the overall recoveries of 97.45~105.58% for the two compounds analyzed. Additionally, a difference was observed in the cluster analysis and principal component analysis between Cyperi Rhizoma in Korea and China. The result demonstrated that the principal component analysis is useful to distinguish between Cyperi Rhizoma in Korea and China.