• 제목/요약/키워드: Ultrasonic fatigue test

검색결과 72건 처리시간 0.03초

고장력 강판의 초음파 피로시험 (Ultrasonic Fatigue Test for a High Strength Steel Plate)

  • 염현호;정용찬;김차영;강기영;이문구;홍민성;전용호
    • 한국생산제조학회지
    • /
    • 제24권6호
    • /
    • pp.589-593
    • /
    • 2015
  • The demand of high cycle fatigue behavior on plate material is increasing because of its various applications. However, the high-cycle fatigue life data of the plate material is very rare compared to the rod material. Thus, in this study, a plate specimen is designed for the ultrasonic fatigue test because it is time efficient as compared to the conventional fatigue test. To apply the ultrasonic fatigue test, the specimen design is required to resonate at 20 kHz. Therefore, the dynamic elastic modulus was determined by measuring the resonance frequency with a piezoelectric element and laser doppler vibrometer (LDV). As a result, the plate specimen is designed and demonstrated using the ultrasonic fatigue testing machine. The ultrasonic fatigue test results were compared with the hydraulic fatigue test results.

Ultrasonic Impact Treatment(UIT)효과가 용접재의 피로수명에 미치는 영향 (The Effect of Ultrasonic Impact Treatment(UIT) for Fatigue Life of Weldment)

  • 송준혁;이현우
    • 한국자동차공학회논문집
    • /
    • 제18권6호
    • /
    • pp.38-45
    • /
    • 2010
  • Welding structures are designed to endure its expected life. The most important factors are life. Especially on welded structure, fatigue strength is critical. So this study performed a research on Box and T shape weldment specimen to examine the influence of welding type. In this experiment, the results indicate Box shape was available in more than T shape. Fatigue tests were performed to evaluate the fatigue strength of the both as-welded and statically pre-loaded specimens by 3 point bending load. Fatigue life can be improved by using Ultrasonic Impact Treatment(UIT) effect. Ultrasonic Impact Treatment(UIT) is excellent for eliminating the tensile residual stresses and generating compressive residual stresses which elevate fatigue strength of welded structures. Also, this shows that welding part has better fatigue life and welding was performed well. In this study, to evaluate the Ultrasonic Impact Treatment(UIT) effect, for welding structure, the experiment was conducted at various levels of stress range between 100MPa and 500MPa. From the test results, it was indicated that fatigue performance was improving by Ultrasonic Impact Treatment(UIT)

압력용기 고온 고압부의 피로손상 예측을 위한 SH 초음파 평가 기법 개발 (The Prediction of Fatigue Damage for Pressure Vessel Materials using SH Ultrasonic Wave)

  • 강용호;정용근;박종진;박익민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.678-683
    • /
    • 2003
  • Ultrasonic method using SH(shear horizontal) wave has been developed to determine the surface damage in fatigued material. Fatigue damages based on propagation energy were analyzed by multiregression analysis and phase measurement in interrupted fatigue test specimen including CrMoV and 12Cr alloy steel. From the test results, as the fatigue damage increased the propagation time of the launched waves increased and amplitude of wavelet decreased. Also, analysis for the waveform modulation showed a reliable estimation, with confidence limit of 97% for 12Cr steel and 95% for CrMoV steel, respectively. Therefore, It is thought that SH ultrasonic wave technique can be applied to determine fatigue damage of in-service component nondestructively.

  • PDF

SH(shear horizontal) 초음파를 이용한 압력용기용 재료의 피로손상 예측 (The Prediction of Fatigue Damage for Pressure Vessel Materials using Shear Horizontal Ultrasonic Wave)

  • 강용호;정용근;송정일
    • 한국정밀공학회지
    • /
    • 제26권6호
    • /
    • pp.90-96
    • /
    • 2009
  • Ultrasonic method using SH(shear horizontal) wave has been developed to determine the surface damage in fatigued material. Fatigue damages based on propagation energy were analyzed by multi-regression analysis in interrupted fatigue test specimen including CrMoV and 12Cr alloy steel. From the test results, as the fatigue damage increased the propagation time of the launched waves increased and amplitude of wavelet decreased. Also, analysis for the waveform modulation showed a reliable estimation, with confidence limit of 97% for 12Cr steel and 95% for CrMoV steel, respectively. Therefore, It is thought that SH ultrasonic wave technique can be applied to determine fatigue damage of in-service component nondestructively.

잔류응력 영역에서 발생한 작은 피로균열의 초음파 평가 (Ultrasonic evaluation of small surface fatigue cracks initiating in residual stress zone)

  • 강계명;김진연
    • 한국가스학회지
    • /
    • 제4권1호
    • /
    • pp.55-62
    • /
    • 2000
  • Pit형 표면결함으로부터 발생하는 작은 피로균열의 거동을 초음파의 표면파를 이용하여 이를 위하여 피로시험중인 Al 2024-T3를 시험재료, 피로시험도중 초음파를 이용하여 피로균열의 거동을 조사하였다. 즉, 피로시험에서 균열이나 Pit로부터 발생하는 작은 피로균열을 여러 응력조건하에서 나타나는 표면파의 반사특성에 관하여 연구하였다. 또한 이론적 결과와 실험적 결과를 상호 비교, 분석하였고, SEM을 사용하여 이들 작은 피로균열을 관찰하였다. 초음파를 이용한 피로균열의 균열 개구 거동에 관한 연구에서 피로균열의 유효균열 특성을 초음파법으로 평가 할 수 있었다.

  • PDF

초음파탄성진동에너지를 이용한 표면개질처리 및 가속피로수명평가 기술의 적용사례 및 응용기술 (Applied Cases and Application Technologies of Ultrasonic Nanocrystalline Surface Modification and Accelerated Fatigue Life Evaluation Using Ultrasonic Elastic Vibrational Energy)

  • 조인식;조인호;오주연;이창순;편영식;박인규
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제1권1호
    • /
    • pp.115-121
    • /
    • 2013
  • 최근 플랜트산업분야에서는 발전설비와 해양 플랜트 및 선박, 교량 건설등 핵심 구조물들에 대한 내구성 향상 및 평가를 위한 기술이 크게 확장 적용될 것으로 본다. 이에 본 연구에서는 초음파 탄성진동에너지를 이용한 초음파 나노표면개질(Ultrasonic Nanocrystalline Surface Modification) 기술과 초음파 피로시험(Ultrasonic Fatigue Test)기술을 통해서 현재까지 국내산업분야에서 활발하게 진행중인 적용사례를 분석하고자 하였으며. 플랜트분야 특히 발전설비와 해양선박 플랜트 및 교량 건설구조물들의 핵심 용접부에 대한 내구성 향상을 위해 크게 확장 적용될 수 있는 새로운 응용기술 연구방향에 대한 방법들을 제시하고자 한다.

초음파 나노표면 개질처리를 통한 베어링강의 회전접촉피로 및 잔류응력 특성에 대한 연구 (Rolling Contact Fatigue and Residual Stress Properties of SAE52100 Steel by Ultrasonic Nano-Crystalline Surface Modification (UNSM))

  • 이창순;박인규;조인식;홍정화;지태구;편영식
    • 열처리공학회지
    • /
    • 제21권1호
    • /
    • pp.10-19
    • /
    • 2008
  • To investigate the effect of ultrasonic nano-crystalline surface modification (UNSM) treatment on rolling contact fatigue and residual stress properties of bearing steels, this paper carried out a rolling contact fatigue test, measured residual stress and retained austenite, performed a wear test, observed microstructure, measured micro hardness, and analyzed surface topology. After the UNSM treatment, it was found that the surface became minute by over $100{\mu}m$. The micro surface hardness was changed from Hv730~740 of base material to Hv850~880 with about 20% improvement, and hardening depth was about 1.3 mm. The compressive residual stress was measured as high as -700~-900 MPa, and the quantity of retained austenite was reduced to 27% from 34%. The polymet RCF-6 ball type rolling contact fatigue test showed over 4 times longer fatigue lifetime after the UNSM treatment under 551 kgf load and 8,000 rpm. In addition, this paper observed the samples, which went through the rolling contact fatigue test, with OM and SEM, and it was found that the samples had a spalling phenomenon (the race way is decentralized) after the UNSM treatment. However, before the treatment, the samples had excessive spalling and complete exploration. Comparison of the test samples before and after the UNSM treatment showed a big difference in the fatigue lifetime, which seems to result from the complicated effects of micro particles, compressive residual stress, retained austenite, and surface topology.

초음파 피로시험편 결정법의 연구동향 (Technical Review of Specimens under Ultrasonic Fatigue Test)

  • 명노준;한승욱;박정훈;최낙삼
    • 대한기계학회논문집A
    • /
    • 제37권8호
    • /
    • pp.967-973
    • /
    • 2013
  • 본 논문에서는 초고주기피로영역(VHCF)에 대한 가속시험 방법인 초음파 피로시험을 소개하고 이와 관련된 이론을 검토하였다. 초음파피로시험은 20 kHz 영역에서 시험편의 공진을 이용하므로 동탄성계수와 파장을 고려하여 시험편의 길이와 형상을 설계하여야 한다. 공진시험을 통하여 20 kHz 에 맞는 파장을 구하고 시험편의 길이와 동탄성계수를 계산한다. 이렇게 계산된 시험편의 형상과 시험시 형성되는 변위값을 측정하여 응력을 구한다. 초음파 피로시험결과는 기존의 피로시험법에 따른 결과와 비교되어 주파수 및 시험편 형상의 효과가 검증되어야 한다.

초음파 비파괴 검사를 이용한 AISI 304 스테인리스강의 크리프-피로 손상의 평가 (Evaluation of Creep-Fatigue Damage in 304 Stainless Steel using Ultrasonic Non-Destructive Test)

  • 이성식;오용준;남수우
    • 대한금속재료학회지
    • /
    • 제49권12호
    • /
    • pp.924-929
    • /
    • 2011
  • It is well known that grain boundary cavitation is the main failure mechanism in austenitic stainless steel under tensile hold creep-fatigue interaction conditions. The cavities are nucleated at the grain boundary during cyclic loading and grow to become grain boundary cracks. The attenuation of ultrasound depends on scattering and absorption in polycrystalline materials. Scattering occurs when a propagation wave encounters microstructural discontinuities, such as internal voids or cavities. Since the density of the creep-fatigue cavities increases with the fatigue cycles, the attenuation of ultrasound will also be increased with the fatigue cycles and this attenuation can be detected nondestructively. In this study, it is found that individual grain boundary cavities are formed and grow up to about 100 cycles and then, these cavities coalesce to become cracks. The measured ultrasonic attenuation increased with the cycles up to cycle 100, where it reached a maximum value and then decreased with further cycles. These experimental measurements strongly indicate that the open pores of cavities contribute to the attenuation of ultrasonic waves. However, when the cavities develop, at the grain boundary cracks whose crack surfaces are in contact with each other, there is no longer any open space and the ultrasonic wave may propagate across the cracks. Therefore, the attenuation of ultrasonic waves will be decreased. This phenomenon of maximum attenuation is very important to judge the stage of grain boundary crack development, which is the indication of the dangerous stage of the structures.