• Title/Summary/Keyword: Ultrasonic Signal

Search Result 638, Processing Time 0.029 seconds

Detection and Evaluation of Microdamages in Composite Materials Using a Thermo-Acoustic Emission Technique (열-음향방출기법을 이용한 복합재료의 미세손상 검출 및 평가)

  • 최낙삼;김영복;이덕보
    • Composites Research
    • /
    • v.16 no.1
    • /
    • pp.26-33
    • /
    • 2003
  • Utilizing a thermo-acoustic emission (AE) technique, a study on detection and evaluation of microfractures in cross-ply laminate composites was performed. Fiber breakages and matrix fractures formed by a cryogenic cooling at $-191^{\circ}C$ were observed with ultrasonic C-scan, optical and scanning electron microscopy. Those microfractures were monitored in a non-destructive in-situ state as three different types of thermo-AE signals classified on the basis of Fast-Fourier Transform and Short-Time Fourier Transform. Thus, it was concluded that real-time estimation of microfracture processes being formed during cryogenic cooling could be accomplished by monitoring such different types of thermo-AEs in each time-stage and then by analyzing thermo-AE behaviors for the respective AE types on the basis of the AE signal analysis results obtained during thermal heating and cooling load cycles.

Sensing Technologies for Grain Crop Yield Monitoring Systems: A Review

  • Chung, Sun-Ok;Choi, Moon-Chan;Lee, Kyu-Ho;Kim, Yong-Joo;Hong, Soon-Jung;Li, Minzan
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.408-417
    • /
    • 2016
  • Purpose: Yield monitoring systems are an essential component of precision agriculture. They indicate the spatial variability of crop yield in fields, and have become an important factor in modern harvesters. The objective of this paper was to review research trends related to yield monitoring sensors for grain crops. Methods: The literature was reviewed for research on the major sensing components of grain yield monitoring systems. These major components included grain flow sensors, moisture content sensors, and cutting width sensors. Sensors were classified by sensing principle and type, and their performance was also reviewed. Results: The main targeted harvesting grain crops were rice, wheat, corn, barley, and grain sorghum. Grain flow sensors were classified into mass flow and volume flow methods. Mass flow sensors were mounted primarily at the clean grain elevator head or under the grain tank, and volume flow sensors were mounted at the head or in the middle of the elevator. Mass flow methods used weighing, force impact, and radiometric approaches, some of which resulted in measurement error levels lower than 5% ($R^2=0.99$). Volume flow methods included paddle wheel type and optical type, and in the best cases produced error levels lower than 3%. Grain moisture content sensing was in many cases achieved using capacitive modules. In some cases, errors were lower than 1%. Cutting width was measured by ultrasonic distance sensors mounted at both sides of the header dividers, and the errors were in some cases lower than 5%. Conclusions: The design and fabrication of an integrated yield monitoring system for a target crop would be affected by the selection of a sensing approach, as well as the layout and mounting of the sensors. For accurate estimation of yield, signal processing and correction measures should be also implemented.

Design Optimization of Hydrated Liquid Crystalline Vesicles Containing a High Content of Ceramide Using DOE (실험 계획법을 적용한 세라마이드 고함량의 수화 액정형 베시클의 최적설계)

  • Shin, Juyeong;Jin, Byung-Suk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.623-631
    • /
    • 2022
  • Using the design of experiment (DOE), factors affecting the particle size of hydrated liquid crystalline vesicles containing a high content of ceramide were analyzed and the mixture composition was optimized. Manufacturing temperature, amount of ethanol, and ultrasonic time were selected as the main variables affecting the droplet size of the vesicles, and the effect of these variables on the droplet size was examined through the signal to noise (S/N) ratios of Taguchi method and ANOVA analysis. In addition, mixture composition experiments of three lipid components constituting the vesicle membrane, hydrogenated phosphatidyl choline (HPC), cholesterol (Chol), and ceramide (Cer), were performed according to the simplex central design matrix of the mixture. Regression analysis was conducted with the experimental data to obtain a model equation, and the optimal mixing composition of the three lipid components to minimize the vesicle droplet size was determined as HPC (0.6), Chol (0.1), and Cer (0.3).

Personal Mobility Safety Helmet Device using Multi-Sensor and Arduino (다중센서 및 아두이노를 활용한 Personal Mobility 스마트헬멧)

  • Dae-Hyun Kim;Won-Young Yang;Dong-Wook Han;Ju-Min Ham;Boong-Joo Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.723-730
    • /
    • 2023
  • Due to the recent development of battery technology, various types of means of transportation such as electric kickboards, Segways, and electric bicycles have emerged, which can be defined as Personal Mobility. In this paper, as the incidence of safety accidents increases due to the increase in the number of users of Personal Mobility, safety helmet devices that strengthen safety capabilities and peripheral recognition functions were studied. In order for the helmet to send a safety signal, Arduino was used as a base to set the value of the sensor according to changes in distance and angle using the ultrasonic sensor to minimize errors and ensure smooth recognition. In addition, a gyro sensor was used to turn on the direction indicator according to each slope. Using a CDS sensor, the LED is designed to turn on when it goes below 150 lux at night. Finally, it is possible to check whether a helmet is worn within 5cm, and when driving at an average speed, the direction indicator light is turned on at 10 degrees, and the LED is turned on at less than 150 lux.

Active Lamb Wave Propagation-based Structural Health Monitoring for Steel Plate (능동 램파 전파에 기초한 강판의 구조건전성 모니터링)

  • Jeong, Woon;Seo, Ju-Won;Kim, Hyeung-Yun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.421-431
    • /
    • 2009
  • This paper is the study on the verification of structural health monitoring (SHM) algorithm based on the ultrasonic guided wave. An active inspection system using Lamb wave (LW) for SHM was considered. The basic study about the application of this algorithm was performed for detecting the circular notch defect in steel plate. LW testing technique, pitch-catch method, was used for interpretation of circular notch defect with depth of 50% of plate thickness and 7 mm width. Damage characterization takes place by comparing $S_0$ mode sensor signals collected before and after the damage event. By subtracting the signals of both conditions from each other, a scatter signal is produced which can be used for damage localization. The continuous Gabor wavelet transform is used to attain the time between the arrivals of the scatter and sensor signals. A new practical damage monitoring algorithm, based on damage monitoring polygon and pitch-catch method, has been proposed and verified with good accuracy. The possible damage location can be estimated by the average on calculated location points and the damage extent by the standard deviation.

Experimental Analysis of Physical Signal Jamming Attacks on Automotive LiDAR Sensors and Proposal of Countermeasures (차량용 LiDAR 센서 물리적 신호교란 공격 중심의 실험적 분석과 대응방안 제안)

  • Ji-ung Hwang;Yo-seob Yoon;In-su Oh;Kang-bin Yim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.2
    • /
    • pp.217-228
    • /
    • 2024
  • LiDAR(Light Detection And Ranging) sensors, which play a pivotal role among cameras, RADAR(RAdio Detection And Ranging), and ultrasonic sensors for the safe operation of autonomous vehicles, can recognize and detect objects in 360 degrees. However, since LiDAR sensors use lasers to measure distance, they are vulnerable to attackers and face various security threats. In this paper, we examine several security threats against LiDAR sensors: relay, spoofing, and replay attacks, analyze the possibility and impact of physical jamming attacks, and analyze the risk these attacks pose to the reliability of autonomous driving systems. Through experiments, we show that jamming attacks can cause errors in the ranging ability of LiDAR sensors. With vehicle-to-vehicle (V2V) communication, multi-sensor fusion under development and LiDAR anomaly data detection, this work aims to provide a basic direction for countermeasures against these threats enhancing the security of autonomous vehicles, and verify the practical applicability and effectiveness of the proposed countermeasures in future research.

An Automatic Mover for a Double-parked Car (이중 주차된 차량용 자동 이동 장치)

  • Lee, Myungsub;Lee, Jun-Beom;Sung, Young Whee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.1
    • /
    • pp.20-27
    • /
    • 2018
  • In this paper, the problem of a double-parked car has been investigated and a method to solve it is studied. Double parking is very common in a public parking lot with insufficient parking space. If a double-parked car blocked the way, a person needs to push the double-parked car to move it. The problem is that moving a double-parked car with hands is very hard and dangerous, especially for the old and the weak. To solve the above mentioned problem, an automatic mover for a double-parked car is proposed and developed. The basic idea is that a double-parked car can be moved by rolling its one wheel. Two rollers are designed and manufactured, which are used to roll a wheel of a double-parked car. The developed automatic mover has two rollers, two driving wheels, and four castors. It also has several ultrasonic sensors so that it can detect obstacles in the way and prevent possible collision. It is verified through several experiments that the developed automatic mover can move a double-parked car safely and easily.

Performance Analysis of Implementation on IoT based Smart Wearable Mine Detection Device

  • Kim, Chi-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.12
    • /
    • pp.51-57
    • /
    • 2019
  • In this paper, we analyzed the performance of IoT based smart wearable mine detection device. There are various mine detection methods currently used by the military. Still, in the general field, mine detection is performed by visual detection, probe detection, detector detection, and other detection methods. The detection method by the detector is using a GPR sensor on the detector, which is possible to detect metals, but it is difficult to identify non-metals. It is hard to distinguish whether the area where the detection was performed or not. Also, there is a problem that a lot of human resources and time are wasted, and if the user does not move the sensor at a constant speed or moves too fast, it is difficult to detect landmines accurately. Therefore, we studied the smart wearable mine detection device composed of human body antenna, main microprocessor, smart glasses, body-mounted LCD monitor, wireless data transmission, belt type power supply, black box camera, which is to improve the problem of the error of mine detection using unidirectional ultrasonic sensing signal. Based on the results of this study, we will conduct an experiment to confirm the possibility of detecting underground mines based on the Internet of Things (IoT). This paper consists of an introduction, experimental environment composition, simulation analysis, and conclusion. Introduction introduces the research contents such as mines, mine detectors, and research progress. It consists of large anti-personnel mine, M16A1 fragmented anti-mine, M15 and M19 antitank mines, plastic bottles similar to mines and aluminum cans. Simulation analysis is conducted by using MATLAB to analyze the mine detection device implementation performance, generating and transmitting IoT signals, and analyzing each received signal to verify the detection performance of landmines. Then we will measure the performance through the simulation of IoT-based mine detection algorithm so that we will prove the possibility of IoT-based detection landmine.

The Design of Broadband Ultrasonic Transducers for Fish Species Identification - Bandwidth Enhancement of a Ultrasonic Transducer Using Double Acoustic Matching Layers- (어종식별을 위한 광대역 초음파 변환기의 설계 ( III ) - 이중음향정합층을 이용한 초음파 변환기의 대역폭 확장 -)

  • 이대재
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.1
    • /
    • pp.85-95
    • /
    • 1998
  • The broadband ultrasonic transducers have been designed to use in obtaining the broadband echo signals from fish schools in relation to the identification of fish species. The broadening of bandwidth was achieved by attaching double acoustic matching layers on the front face of a Tonpilz transducer consisted of an aluminum head, a piezoelectric ring, a brass tail and to evaluate the performance characteristics, such as the transmitting voltage response(TVR) of transducers. The constructed transducers were tested experimentally and numerically by changing the parameters such as impedances and thicknesses of the head, tail and matching layers, in the water tank. Also, the developed transducer was excited by a chirp signal and the received chirp waveforms were analyzed. According to the measured TVR results, the available 3 dB bandwidth of the transducer with double matching layers of an $Al_O_3/epoxy$ composite of 7 mm thick and a polyurethane window of 18 mm thick was 7.3 kHz with a center frequency of 38.8 kHz, and the maximum and the minimum values of the TVR in this frequency region were 135.7 dB and 132.7 dB re $1\;{\mu}Pa/V$ at 1 m, respectively. Also, the available 3 dB bandwidth of the transducer with double matching layers of an $Al_O_3/epoxy$ composite of 11 mm thick and a polyurethane window of 15 mm thick was 6.2 kHz with a center frequency of 38.6 kHz, and the maximum TVR value in the frequency region was 136.3 dB re $1\;{\mu}Pa/V$ at 1 m. Reasonable agreement between the experimental results and the numerical results for the TVR of the developed transducers was achieved. The frequency dependant characteristics of experimentally observed chirp signals closely matched to the measured TVR results. These results suggest that there is potential for increasing the bandwidth by varying other parameters in the transducer design and the material of the acoustic matching layers.

  • PDF

THE CURRENT STATUS OF BIOMEDICAL ENGINEERING IN THE USA

  • Webster, John G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.27-47
    • /
    • 1992
  • Engineers have developed new instruments that aid in diagnosis and therapy Ultrasonic imaging has provided a nondamaging method of imaging internal organs. A complex transducer emits ultrasonic waves at many angles and reconstructs a map of internal anatomy and also velocities of blood in vessels. Fast computed tomography permits reconstruction of the 3-dimensional anatomy and perfusion of the heart at 20-Hz rates. Positron emission tomography uses certain isotopes that produce positrons that react with electrons to simultaneously emit two gamma rays in opposite directions. It locates the region of origin by using a ring of discrete scintillation detectors, each in electronic coincidence with an opposing detector. In magnetic resonance imaging, the patient is placed in a very strong magnetic field. The precessing of the hydrogen atoms is perturbed by an interrogating field to yield two-dimensional images of soft tissue having exceptional clarity. As an alternative to radiology image processing, film archiving, and retrieval, picture archiving and communication systems (PACS) are being implemented. Images from computed radiography, magnetic resonance imaging (MRI), nuclear medicine, and ultrasound are digitized, transmitted, and stored in computers for retrieval at distributed work stations. In electrical impedance tomography, electrodes are placed around the thorax. 50-kHz current is injected between two electrodes and voltages are measured on all other electrodes. A computer processes the data to yield an image of the resistivity of a 2-dimensional slice of the thorax. During fetal monitoring, a corkscrew electrode is screwed into the fetal scalp to measure the fetal electrocardiogram. Correlations with uterine contractions yield information on the status of the fetus during delivery To measure cardiac output by thermodilution, cold saline is injected into the right atrium. A thermistor in the right pulmonary artery yields temperature measurements, from which we can calculate cardiac output. In impedance cardiography, we measure the changes in electrical impedance as the heart ejects blood into the arteries. Motion artifacts are large, so signal averaging is useful during monitoring. An intraarterial blood gas monitoring system permits monitoring in real time. Light is sent down optical fibers inserted into the radial artery, where it is absorbed by dyes, which reemit the light at a different wavelength. The emitted light travels up optical fibers where an external instrument determines O2, CO2, and pH. Therapeutic devices include the electrosurgical unit. A high-frequency electric arc is drawn between the knife and the tissue. The arc cuts and the heat coagulates, thus preventing blood loss. Hyperthermia has demonstrated antitumor effects in patients in whom all conventional modes of therapy have failed. Methods of raising tumor temperature include focused ultrasound, radio-frequency power through needles, or microwaves. When the heart stops pumping, we use the defibrillator to restore normal pumping. A brief, high-current pulse through the heart synchronizes all cardiac fibers to restore normal rhythm. When the cardiac rhythm is too slow, we implant the cardiac pacemaker. An electrode within the heart stimulates the cardiac muscle to contract at the normal rate. When the cardiac valves are narrowed or leak, we implant an artificial valve. Silicone rubber and Teflon are used for biocompatibility. Artificial hearts powered by pneumatic hoses have been implanted in humans. However, the quality of life gradually degrades, and death ensues. When kidney stones develop, lithotripsy is used. A spark creates a pressure wave, which is focused on the stone and fragments it. The pieces pass out normally. When kidneys fail, the blood is cleansed during hemodialysis. Urea passes through a porous membrane to a dialysate bath to lower its concentration in the blood. The blind are able to read by scanning the Optacon with their fingertips. A camera scans letters and converts them to an array of vibrating pins. The deaf are able to hear using a cochlear implant. A microphone detects sound and divides it into frequency bands. 22 electrodes within the cochlea stimulate the acoustic the acoustic nerve to provide sound patterns. For those who have lost muscle function in the limbs, researchers are implanting electrodes to stimulate the muscle. Sensors in the legs and arms feed back signals to a computer that coordinates the stimulators to provide limb motion. For those with high spinal cord injury, a puff and sip switch can control a computer and permit the disabled person operate the computer and communicate with the outside world.

  • PDF