• Title/Summary/Keyword: Ultrasonic Sensor

Search Result 835, Processing Time 0.029 seconds

A Study on the Object Angle Inference in a Sonar Sensor Array System (초음파센서 배열 시스템에서 물체의 각도 추론에 관한 연구)

  • 나승유;박민상
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.271-274
    • /
    • 1998
  • Ultrasonic sensors are becoming indispensable components in every sector of automation equipments due to many advantages. But the main purposes of the noncontact sensing device are rather narrowly confined within object detection and distance measurement. To widen the realm of the applications to object recognition, ultrasonic sensors need to improve the recognition resolution to a certain amount. To resolve the problem of spatial resolution restriction, an increased number of the sensors in the forms of a linear array or 2-dimensional array of the sensor has been used. Also better resolution has been obtained by shifting the array in several steps using mechanical actuators. For an object recognition using ultrasonic sensors, measurements of distance, shift, oblique angle in certain ranges should be obtained. But a little attention has been paid to the measurement of angles. In this paper we propose a practical method for an object angular value detection in addition to distance measurement in ultrasonic sensor array system with little additional hardware burden. Using the established measurement look-up table for the variations of distance, shift, angle and transmitter voltages for each sensor characteristics, a set of different return echo signals for adjacent receivers are processed to provide enhanced angular value reading for an object.

  • PDF

Fabrication and Experiment of Ultrasonic Sensor Integrated Motion Recognition Device for Vehicle Manipulation (초음파 센서를 이용한 모션 인식 차량 통합 제어 장치의 제작 및 실험)

  • Na, Yeongmin;Park, Jongkyu;Lee, Hyunseok;Kang, Taehun
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.175-180
    • /
    • 2015
  • Worldwide, studies on intelligent vehicles for the convenience of drivers have been actively conducted as the number of cars has increased. However, vehicle convenience enabled by buttons lowers the concentration on driving and hence poses as a huge threat to the safety of the driver. The use of one of the convenient features, impaired driving auxiliary equipment, is limited because of its complex usage, and this device also hinders the front view of the driver. This paper proposes a vehicle-control device for controlling the convenient features as well as changes in speed and direction using gestures and motions of the driver. This device consists of an ultrasonic sensor for recognizing movement, an arduino for accepting signal control functions and servo and DC motors apply to various vehicle parts. Firstly, the vehicle-control device was designed using a 3D CAD program known as Solid-works based on the size of the steering wheel. Then, through simulations, a suitable length for minimizing the absorbent between ultrasonic sensors was confirmed using a program known as COMSOL Multiphysics. Finally, simulation results were verified through experiments, and the optimal size of the device was identified through the number of errors.

Development of on Intelligent Automatic Door System Using Ultrasonic Sensors (초음파센서를 이용한 지능형 자동문시스템 개발)

  • Song, Dong-Hyuk;Chang, Byong-Kun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.6
    • /
    • pp.31-39
    • /
    • 2009
  • This paper proposes an ultrasonic sensor based intelligent automatic door system which improves the performance of conventional door systems by adding more intelligent functions such that it offers more convenience to passersby and reduces power loss. The conventional automatic door systems employed passive and active infrared sensors for detecting objects and human bodies. But, they have problems such as power loss in door closing, not sensing fast approaching objects, and safety. The proposed automatic door system with ultrasonic sensors prevents unnecessary door closings to save the power and senses fast approaching objects to open the door at proper time, and improves safety. Thus, the proposed system improves the performance of the conventional systems in terms of operation, economy, and safety.

Ultrasonic Bonding of Au Flip Chip Bump for CMOS Image Sensor (CMOS 이미지 센서용 Au 플립칩 범프의 초음파 접합)

  • Koo, Ja-Myeong;Moon, Jung-Hoon;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.1
    • /
    • pp.19-26
    • /
    • 2007
  • This study was focused on the feasibility of ultrasonic bonding of Au flip chip bumps for a practical complementary metal oxide semiconductor (CMOS) image sensor with electroplated Au substrate. The ultrasonic bonding was carried out with different bonding pressures and times after the atmospheric pressure plasma cleaning, and then the die shear test was performed to optimize the ultrasonic bonding parameters. The bonding pressure and time strongly affected the bonding strength of the bumps. The Au flip chip bumps were successfully bonded with the electroplated Au substrate at room temperature, and the bonding strength reached approximate 73 MPa under the optimum conditions.

  • PDF

A Rear Alarm System using Ultra-sonic Wave Sensor (초음파센서를 이용한 후방경보시스템)

  • Lee, Yeong-Roh;Lee, Jeung-Hyun;Park, Jeung-Soo;Kim, Tae-Hyun;Cho, Wan-Hee;Lee, Dong-Hyun;Soh, Dea-Wha
    • Journal of the Speleological Society of Korea
    • /
    • no.79
    • /
    • pp.47-51
    • /
    • 2007
  • As time goes by, ultrasonic wave is getting important and new technology, which is adapted to ultrasonic wave is used to industry such as home appliance, automobile, and high-tech industry. Especially, ultrasonic wave is used an alarm device whether there are things at the rear of I. It's do important device in automobile system because it can prevent car-accident from inattention of the driver. Actually, there has already been lots of the alarm device. But it's expensive and so difficult to set the device. So almost driver don't set device at their automobile. We focus on these problems. We want to make cheap md easy setting device. Ultrasonic wave sensor emits Ultrasonic-signal at outgoing part and receive part accept the signal. Sensor analyzes the signal and Distance is displayed on LCD of device. The device makes alarm if distance is near from something of rear. The device makes break-system operate to prevent drivers from crashing if distance is so near. This device is portable. So normal deriver can set it easily.

Ultrasonic Source Localization and Visualization Technique for Fault Detection of a Power Distribution Equipment (배전설비 결함 검출을 위한 초음파 음원 위치추정 및 시각화 기법)

  • Park, Jin Ha;Jung, Ha Hyoung;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.315-320
    • /
    • 2015
  • This paper describes the implemenation of localization and visualization scheme to find out an ultrasonic source caused by defects of a power distribution line equipment. To increase the fault detection performance, $2{\times}4$ sensor array is configured with MEMS ultrasonic sensors, and from the sensor signals aquired, the azimuth and elevation angles of the ultrasonic source is estimated based on the delay-sum beam forming method. Also, to visualize the estimated location, it is marked on the background image. Experimental results show applicability of the present technique.

Localization and Classification of Target Surfaces using Two fairs of Ultrasonic Sensors (2쌍의 초음파센서를 이용한 측정면의 위치 측정 및 종류 분류 기법)

  • 한영준;한헌수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.6
    • /
    • pp.747-752
    • /
    • 1998
  • Ultrasonic sensors have been widely used to recognize the working environment for a mobile robot. However, their intrinsic problems, such as specular reflection, wide beam angle, and slow propagation velocity, require an excessive number of sensors to be integrated for achieving the sensing goal. This paper proposes a new measurement scheme which uses only two sets of ultrasonic sensors to determine the location and the type of a target surface. By measuring the time difference between the returned signals from the target surface, which are generated by two transmitters with 1 ㎳ difference, it classifies the type and determines the size of the target surface. Since the proposed sensor system uses only two sets of ultrasonic sensors to recognize and localize the target surface, it significantly simplifies the sensing system and reduces the signal processing time so that the working environment can be recognized in real time.

  • PDF

Characteristics and Signal Analysis of Fiber-optic Sensor for Detecting Ultrasonic Waves Generated by Discharge in Insulation Oil (유중 방전에 의한 초음파 측정용 광섬유 센서 특성 및 측정 데이터 분석)

  • 이상훈;송현직;이광식;김달우
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.10
    • /
    • pp.481-486
    • /
    • 2003
  • It is well known that a discharge in oil is the source of various physical phenomena. Ultrasonic-wave detection is a useful method to the diagnosis of the transformer-insulation condition. Conventionally, ultrasonic waves are detected by Piezo-electric transducer, and we use optical method that has many advantages. In this paper, we constructed a Mach-Zehnder interferometer with optical fiber and investigated the principle of operation. Test arrangement is based on the needle-plane electrode system in oil and applied AC high voltage. Ultrasonic waves were detected and analyzed with wavelet transform.

Gaseous Fuel Level Measurement of Ultrasonic Wave based on Gauss Algorithm (가우스알고리즘에 의한 초음파의 가스연료레벨 계측)

  • Kim, Hong-Ju;Choi, Doo-Seuk
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.4
    • /
    • pp.161-167
    • /
    • 2018
  • The amount of CNG was measured using a pressure sensor in the case of CNG vehicles. However, the current measurement method causes anxiety to the driver because it is difficult to measure the detailed amount of CNG according to various environmental conditions. This study was performed to measure the amount of CNG in CNG fuel system, and presented the method of measurement by simulating the detection system of CNG. In this experiment, a detection simulator with an ultrasonic sensor in CNG tank of Type-3 was designed, and the reception signal of the ultrasonic sensor was verified by reducing the pressure from 100 bars to 0 bars (increment=5 bars) using compressed air. As a result, the output signal voltage of the ultrasonic sensor decreased as the pressure in the tank decreased, and the it was verified that the shape of the graph was linearity.

Modeling and Analysis of Vehicle Detection Using Roadside Ultrasonic Sensors in Wireless Sensor Networks (WSN 기반 노변 초음파 센서를 이용한 차량인식에 대한 모델링 및 분석)

  • Jo, Youngtae;Jung, Inbum
    • Journal of KIISE
    • /
    • v.41 no.10
    • /
    • pp.745-761
    • /
    • 2014
  • To address the problems of existing traffic information acquisition systems such as high cost and low scalability, wireless sensor networks (WSN)-based traffic information acquisition systems have been studied. WSN-based systems have many benefits including high scalability and low maintenance cost. Recently, various sensors are studied for traffic surveillance based on WSN, such as magnetic, acoustic, and accelerometer sensors. However, ultrasonic sensor based systems have not been studied. There are many issues for WSN-based systems, such as battery driven operation and low computing power. Thus, power saving methods and specific algorithms with low complexity are necessary. In this paper, we introduce optimal methodologies for power saving of ultrasonic sensors based on the modeling and analysis in detail. Moreover, a new vehicle detection algorithm for low complexity using ultrasonic data is presented. The proposed methodologies are implemented in a tiny microprocessor. The evaluation results show that our algorithm has high detection accuracy.