• 제목/요약/키워드: Ultrasonic Pulse Velocity test

검색결과 102건 처리시간 0.022초

고온을 받은 콘크리트 적용을 위한 초음파 속도를 이용한 강도추정식 검토 (Study on the Compressive Strength Equation using Ultrasonic Pulse Velocity with Concrete Exposed to High Temperature)

  • 황의철;김규용;최경철;윤민호;이보경;이영욱
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 추계 학술논문 발표대회
    • /
    • pp.139-140
    • /
    • 2015
  • The purpose of this study was to evaluate existing compressive strength equation with concrete exposed to high temperature by ultrasonic pulse velocity. As the result, original compressive strength equation is proper only for compressive strength of normal concrete. Therefore, an accumulation of experimental database of concrete exposed to high temperature is necessary for proposal of new compressive strength equation.

  • PDF

균열 주입부의 비파괴 검사에 의한 주입효과 판정에 관한 연구 (Non-destructive Testing Methods to Evaluate the Effectiveness of Crack Repair Using Expoxy and Microcement)

  • 최홍식;이시우;이호범;송영철;방기성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.841-846
    • /
    • 2002
  • Development on non-destructive testing methods were performed to evaluate the effectiveness of crack repair for test beams induced a crack. Cracked beams are repaired with expoxy and microcement, and then they are tested by two methods, the ultrasonic pulse velocity method and the transfer function method. It is proved that the ultrasonic pulse velocity method is very valid for the evaluation of the effectiveness on expoxy repair, and the transfer function method is very applicable to evaluate the effectiveness on microcement repair.

  • PDF

Characteristics of Lightweight Concrete and Their Application in Structures

  • 성찬영
    • 한국농공학회지
    • /
    • 제34권E호
    • /
    • pp.60-69
    • /
    • 1992
  • The research significance of the paper is to identify the major properties of synthetic lightweight concrete that are affected by ASR expansion and to determine the extent and magnitude of the loss in these properties. Emphasis is also given to the use of non-destructive testing techniques ; Such as dynamic modulus of elasticity and ultrasonic pulse velocity, to examine whether these methods could be used to identify the initiation of expansion and the internal structural damage caused by ASR.

  • PDF

Correlation of rebound hammer and ultrasonic pulse velocity methods for instant and additive-enhanced concrete

  • Yudhistira J.U. Mangasi;Nadhifah K. Kirana;Jessica Sjah;Nuraziz Handika;Eric Vincens
    • Structural Monitoring and Maintenance
    • /
    • 제11권1호
    • /
    • pp.41-55
    • /
    • 2024
  • This study aims to determine the characteristics of concrete as identified by Rebound Hammer and Ultrasonic Pulse Velocity (UPV) tests, focusing particularly on their efficacy in estimating compressive strength of concrete material. The study involved three concrete samples designed to achieve a target strength of 29 MPa, comprising normal concrete, instant concrete, and concrete with additives. These were cast into cube specimens measuring 150×150×150 mm. Compressive strength values were determined through both destructive and non-destructive testing on the cubic specimens. As a result, the non-destructive methods yielded varying outcomes for each correlation approach, influenced by the differing constituent materials in the tested concretes. However, normal concrete consistently showed the most reliable correlation, followed by concrete with additives, and lastly, instant concrete. The study found that combining Rebound Hammer and UPV tests enhances the prediction accuracy of compressive strength of concrete. This synergy was quantified through multivariate regression, considering UPV, rebound number, and actual compressive strength. The findings also suggest a more significant influence of the Rebound Hammer measurements on predicting compressive strength for BN and BA, whereas UPV and RN had a similar impact on predicting BI compressive strength.

공극을 포함한 실리카샌드 시편의 초음파 속도변화 측정 (Measurement of Ultrasonic Wave Velocity Changes in Silica-Sand Specimens with Voids)

  • 김대유;임홍철;조윤진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 춘계 학술논문 발표대회
    • /
    • pp.48-49
    • /
    • 2017
  • In order to examine the effect of voids on the ultrasonic wave velocity, specimens made of Silica-Sand with voids were prepared for the measurements. The volume fraction of 0, 15, and 30% of voids were used to compare the differences. Because of its more homogeneous distribution of materials properties, the Silica-Sand specimens were used, as compared to mortar specimens. The results showed clear change in ultrasonic wave velocity with different volume fraction of voids. This result is to be used for the estimation of the integrity of concrete structures using ultrasonic wave velocity method as nondestructive testing.

  • PDF

압축파 속도를 이용한 콘크리트의 강도 평가 (Evaluation of Concrete Strength Using Compression Wave Velocity)

  • 이회근;이광명;김동수;김지상
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.697-702
    • /
    • 1999
  • Among several non-destructive testing methods, ultrasonic pulse velocity method has been widely used for the evaluation of concrete strength. However, this method might not provide accurate estimated results since factors influencing the relationship between strength and wave velocity is not considered. In this study, the evaluation methods of concrete strength using compression wave velocities measured by either ultrasonic pulse velocity method or impact-resonance method are proposed. A basic equation is obtained by the linear regression with velocity vs. strength data at a specific age and then, ageing factor is employed in the equation to consider the difference of the increasing rate between wave velocity and strength. Strengths predicted by the proposed equation agree well with test results.

  • PDF

초음파 속도법을 이용한 콘크리트의 고온열화 평가에 대한 연구 (Study on Evaluation of High Temperature Degradation of Concrete using Ultrasonic Velocity Method)

  • 황의철;김규용;최경철;윤민호;김홍섭;이보경
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 추계 학술논문 발표대회
    • /
    • pp.146-147
    • /
    • 2016
  • Concrete has been recognized as a material which is resistant to high temperatures, but chemicophysical property of concrete is changed by the high temperature. So, mechanical properties of concrete may be reduced. So, concrete at high temperature is evaluated mechanical properties for safety inspection. However, research of ultrasonic method is not much. Therefore, the purpose of this study is to NDT(non-destructive test) of 30, 70, 110MPa concrete exposed high temperature using ultrasonic pulse velocity.

  • PDF

Homogeneity of lightweight aggregate concrete assessed using ultrasonic-echo sensing

  • Wang, H.Y.;Li, L.S.;Chen, S.H.;Weng, C.F.
    • Computers and Concrete
    • /
    • 제6권3호
    • /
    • pp.225-234
    • /
    • 2009
  • Dredged silt from reservoirs in southern Taiwan was sintered to make lightweight aggregates (LWA), which were then used to produce lightweight aggregate concrete (LWAC).This study aimed to assess the compressive strength and homogeneity of LWAC using ultrasonic-echo sensing. Concrete specimens were prepared using aggregates of four different particle density, namely 800, 1100, 1300 and 2650 kg/$m^3$. The LWAC specimens were cylindrical and a square wall with core specimens drilled. Besides compressive strength test, ultrasonic-echo sensing was employed to examine the ultrasonic pulse velocity and homogeneity of the wall specimens and to explore the relationship between compressive strength and ultrasonic pulse velocity. Results show that LWA, due to its lower relative density, causes bloating, thus resulting in uneven distribution of aggregates and poor homogeneity. LWAC mixtures using LWA of particle density 1300 kg/$m^3$ show the most even distribution of aggregates and hence best homogeneity as well as highest compressive strength of 63.5 MPa. In addition, measurements obtained using ultrasonic-echo sensing and traditional ultrasonic method show little difference, supporting that ultrasonic-echo sensing can indeed perform non-destructive, fast and accurate assessment of LWAC homogeneity.

수분 함유량이 콘크리트의 종파 속도에 미치는 영향에 관한 연구 (Influence of Moisture Content on Longitudinal Wave Velocity in Concrete)

  • 이희근;이광명;김지상;김동수
    • 비파괴검사학회지
    • /
    • 제19권4호
    • /
    • pp.259-269
    • /
    • 1999
  • 최근 초음파속도법과 충격반향기법 등과 같이 탄성파를 이용한 비파괴검사 방법이 콘크리트의 강도나 탄성계수를 결정하는데 유용하게 사용되고 있다. 하지만 탄성파 속도에 영향을 미치는 다양한 인자들이 고려되지 않은 상태에서 비파괴검사가 행해지고 있어 실제로 만족할 만한 결과를 주지 못하고 있다. 이 연구에서는 다양한 영향인자들 중에서 특히 콘크리트의 수분함유량이 종파 속도에 미치는 영향정도를 실험을 통해 조사하였다. 콘크리트 내부의 수분함유량이 감소하면, 즉 콘크리트가 건조해지면 종파 속도는 점점 감소하며, 충격반향기법에 의해 측정된 막대파 속도가 초음파 속도보다 수분의 영향을 더 많이 받는 것으로 나타났다. 또한 기건양생하에서는 재령이 증가함에 따라 수분함유량이 감소하게 되어 콘크리트의 종파 속도는 거의 증가하지 않는 반면에 강도는 점차적으로 증가하는 경향을 보이기 때문에 종파 속도와 콘크리트 강도의 상관관계 설정시 이를 반드시 고려해야 할 것으로 판단된다.

  • PDF

규암 골재를 사용한 콘크리트 구조물의 재령에 따른 비파괴강도 추정식 (Prediction Formulas for Nondestructive Strength of Quartzite Aggregate Concrete)

  • 오병환;김동욱;이승석
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권2호
    • /
    • pp.137-146
    • /
    • 2001
  • The non-destructive tests are widely used to predict the strength of existing structures. The purpose of the present study is to propose the prediction equations for strength evaluation of concrete structures. The present study focuses on the rebound method and ultrasonic pulse velocity method for quartzite aggregate concrete. The major test variables include the water-cement ratio and curing methods. The water-cement ratio are 0.4, 0.5, 0.6, 0.7, respectively and the curing method covers ail-dry condition and standard curing condition. The prediction equations for strength of concrete are proposed from the present test data.

  • PDF