• Title/Summary/Keyword: Ultrasonic Polishing

Search Result 35, Processing Time 0.028 seconds

The Polishing Characteristics and Development of Ultrasonic Polishing System through Horn Analysis (혼 해석을 통한 초음파 폴리싱 시스템의 개발 및 연마특성)

  • 박병규;김성청;문홍현;이찬호;강연식
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.53-60
    • /
    • 2004
  • We have developed and manufactured an experimental ultrasonic polishing machine with frequency of 20kHz at the power of vibration 1.7㎾ for effective ultrasonic polishing in processing of high hardness material. Design of the horn is performed by the FEM analysis. The following conclusions were empirically deduced through experimental results to clarify the major elements which affect the surface roughness during the ultrasonic process by following the experimental plans. The ultrasonic polishing machine has been developed in parts of structure part, ultrasonic generator, vibrator. We were able to process the high hardness material without difficulty as a result of ultrasonic polishing by utilizing the groove added step-type horn. Through analyzing by applying the experimental plans, the rotating speed of the horn was determined to be the major factor in influencing the surface roughness. In the case of ceramic, wafer, we were able to obtain good surface roughness when the feed rate and the ultrasonic output were higher. Because the load on slurry particle increases when the ultrasonic output is higher, the processed surface becomes worse in the case of optical glass.

A Study on the Surface Roughness of Ceramics According to Ultrasonic Polishing (초음파 폴리싱 가공에 따른 세라믹재료의 표면거칠기에 관한 연구)

  • Moon, Hong-Hyun;Park, Byung-Gyu;Lee, Chan-Ho;KIm, Sung-Chung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.1
    • /
    • pp.15-21
    • /
    • 2003
  • The ultrasonic polishing machine was developed to get super finishing that consist of machine part that can rotate and travel the main shaft with power 1.5kW, ultrasonic generator with frequency 20kHz. By using this machine we were investigated the characteristics of ultrasonic polishing for three different ceramics, and so could be obtained following results. First, we could be obtained the excellent surface for hard-ta-difficult cutting materials. Second, the effect of surface roughness for the feed rate could be shown that the more the feed rate Increases, the more the value of surface roughness increases. Third, owing to the characteristics being progressed brittle fracture in $Al_2O_3$ polishing with this machine, the value of surface roughness is larger than other ceramics. Forth, because the ultrasonic polishing can be smoother than the existing grinding in discharging the chips, it could be possible to improve the surface roughness about up to 15%.

  • PDF

The Polishing Characteristics and Development of Ultrasonic Polishing System (초음파 폴리싱 시스템의 개발 및 특성)

  • Moon, H.H.;Park, B.G.;Kim, S.C.;Lee, C.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1014-1020
    • /
    • 2003
  • We have developed the ultrasonic polishing system to get super finishing that consist of machine part that can rotate and travel the main shaft with power 1.5kW, ultrasonic generator with frequency 20kHz. By using this system we were investigated the characteristics of ultrasonic polishing and deduced the major facters which affect the surface roughness by the experimental plans for three different materials such as ceramic, glass, and wafer, and so could be obtained following results. We could be obtained the excellent surface for hard-to-difficult cutting materials. The rotating speed could be found to be major factor influencing the surface roughness. In the case of ceramic and wafer, we were able to obtain good surface roughness when the feed rate and ultrasonic output is higher. In the case of glass, the surface roughness becames worse when ultrasonic output is higher because of increasing of load affacting on the particles in slurry.

  • PDF

Surface changes of metal alloys and high-strength ceramics after ultrasonic scaling and intraoral polishing

  • Yoon, Hyung-In;Noh, Hyo-Mi;Park, Eun-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.3
    • /
    • pp.188-194
    • /
    • 2017
  • PURPOSE. This study was to evaluate the effect of repeated ultrasonic scaling and surface polishing with intraoral polishing kits on the surface roughness of three different restorative materials. MATERIALS AND METHODS. A total of 15 identical discs were fabricated with three different materials. The ultrasonic scaling was conducted for 20 seconds on the test surfaces. Subsequently, a multi-step polishing with recommended intraoral polishing kit was performed for 30 seconds. The 3D profiler and scanning electron microscopy were used to investigate surface integrity before scaling (pristine), after scaling, and after surface polishing for each material. Non-parametric Friedman and Wilcoxon signed rank sum tests were employed to statistically evaluate surface roughness changes of the pristine, scaled, and polished specimens. The level of significance was set at 0.05. RESULTS. Surface roughness values before scaling (pristine), after scaling, and polishing of the metal alloys were $3.02{\pm}0.34{\mu}m$, $2.44{\pm}0.72{\mu}m$, and $3.49{\pm}0.72{\mu}m$, respectively. Surface roughness of lithium disilicate increased from $2.35{\pm}1.05{\mu}m$ (pristine) to $28.54{\pm}9.64{\mu}m$ (scaling), and further increased after polishing ($56.66{\pm}9.12{\mu}m$, P<.05). The zirconia showed the most increase in roughness after scaling (from $1.65{\pm}0.42{\mu}m$ to $101.37{\pm}18.75{\mu}m$), while its surface roughness decreased after polishing ($29.57{\pm}18.86{\mu}m$, P<.05). CONCLUSION. Ultrasonic scaling significantly changed the surface integrities of lithium disilicate and zirconia. Surface polishing with multi-step intraoral kit after repeated scaling was only effective for the zirconia, while it was not for lithium disilicate.

Vibration Electrochemical Polishing for Localized Surface Leveling (미세표면 평활화를 위한 진동 전기화학 폴리싱)

  • Kim, Uksu;Kim, Youngbin;Park, Jeongwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.2
    • /
    • pp.148-153
    • /
    • 2013
  • This study demonstrates a novel hybrid surface polishing process combining non-traditional electrochemical polishing(ECP) with external artificial ultrasonic vibration. ECP, typical noncontact surface polishing process, has been used to improve surface quality without leaving any mechanical scratch marks formed by previous mechanical processes, which can polish work material by electrochemical dissolution between two electrodes surfaces. This research suggests vibration electrochemical polishing(VECP) assisted by ultrasonic vibration for enhancing electrochemical reaction and surface quality compared to the conventional ECP. The localized roughness of work material is measured by atomic force microscopy(AFM) for detailed information on surface. Besides roughness, overall surface quality, material removal rate(MRR), and productivity etc. are compared with conventional ECP.

Vibration Electrochemical Polishing (VECP) for Improved Surface Defects of Stainless Steel (스테인리스강의 표면 결점 개선을 위한 진동 전기화학 폴리싱)

  • Kim, Uk Su;Park, Jeong Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.795-799
    • /
    • 2013
  • This paper describes a novel hybrid surface polishing process combining non-traditional electrochemical polishing (ECP) with external artificial ultrasonic vibration. The purpose of this study is to develop an easier method for improving stainless steel surfaces. To this end, vibration electrochemical polishing (VECP), a novel ultrasonic manufacturing process, for enhancing electrochemical reaction and surface quality compared with that achieved using conventional ECP is suggested. In addition, for finding the optimized experimental conditions, the two methods are compared under various current densities. Localized roughness of the work material is measured with atomic force microscopy (AFM) and scanning electron microscopy (SEM) for obtaining detailed surface information.

A Study on the Ultrasonic Conditioning for Interlayer Dielectic CMP (층간절연막 CMP의 초음파 컨디셔닝 특성에 관한 연구)

  • 서헌덕;정해도;김형재;김호윤;이재석;황징연;안대균
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.854-857
    • /
    • 2000
  • Chemical Mechanical Polishing(CMP) has been accepted as one of the essential processes for VLSI fabrication. However, as the polishing process continues, pad pores get to be glazed by polishing residues, which hinder the supply of new slurry. This defect makes removal rate decrease with a number of polished wafer and the desired within-chip planarity, within wafer and wafer-to-wafer nonuniformity are unable to be achieved. So, pad conditioning is essential to overcome this defect. The eletroplated diamond grit disk is used as the conventional conditioner, And alumina long fiber, the .jet power of high pressure deionized water and vacuum compression are under investigation. But, these methods have the defects like scratches on wafer surface by out of diamond grits, subsidences of pad pores by over-conditioning, and the limits of conditioning effect. To improve these conditioning methods. this paper presents the Characteristics of Ultrasonic conditioning aided by cavitation.

  • PDF

Magnetic Abrasive Polishing Technology with Ceramic Particles (세라믹 입자를 이용한 자기연마가공 기술 사례)

  • Kwak, Tae-Soo;Kwak, Jae-Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1253-1258
    • /
    • 2013
  • Ceramic particles as polishing abrasives are often used in a magnetic abrasive polishing process because they have strong wear resistance. Non-ferromagnetic ceramic abrasives should be mixed with ferromagnetic iron particles for controlling the mixture within a magnetic brush during the polishing process. This study describes the application of the ceramic particles for the magnetic abrasive polishing. The distribution of the magnetic abrasives attached on a tool varies with magnetic flux density and tool rotational speed. From the correlation between abrasive adhesion ratio in the tool and surface roughness produced on a workpiece, practical polishing conditions can be determined. A step-over for polishing a large sized workpiece is able to be selected by a S curve, and an ultrasonic vibration assisted MAP produces a better surface roughness and increases a polishing efficiency.