• 제목/요약/키워드: Ultrasonic Levitation

검색결과 16건 처리시간 0.019초

초음파 굽힘 진동에 의한 음향 부상 및 회전 (Acoustic Levitation and Rotation Produced by Ultrasonic Flexural Vibration)

  • Loh, Byoung-Gook
    • 한국소음진동공학회논문집
    • /
    • 제14권5호
    • /
    • pp.432-438
    • /
    • 2004
  • 10 마이크로미터의 진폭을 갖는 28.4 KHz의 초음파 굽힘진동을 이용하여 초음파 진동판과 정지판 사이에서 다수의 소형 실린더 형태의 스티로폼를 진동판의 길이 방향으로 안정적으로 부양시켰다. 진동자와 정지판의 간격이 음향파장 (16.6 mm)의 1/2일 경우, 부양된 물체가 음향파장의 1/4 지점에서 안정적으로 부양되는 이유를 이론적으로 증명하였으며, 또한 실험적으로 검증하였다. 질량이 균형적으로 분포된 물체의 경우 부양시 고속으로 회전하게 되는데 이는 초음파 진동에 의해서 생성된 음향유동에 의한 것이다. 지름 1.8 mm, 길이 3 mm의 실린더 형태의 스티로폼의 경우 2400 rpm 으로 회전하는 것이 실험적으로 관찰되었다. 음향부양은 작은 세포나 혈액내의 구성체 혹은 미세 분진의 조작에 응용될 수 있다.

초음파에 의해서 가진되어지는 Flexural Beam의 동특성에 관한 연구 (A study on the dynamic characteristics of exciting Flexural beam by ultrasonic wave)

  • 정상화;신상문;김광호;이상희;김주환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.792-796
    • /
    • 2006
  • In recent years, the semiconductor industry and the optical industry is developed rapidly. The recent demand has expanded for optical components such as a optical lens, a optical semiconductor and a measuring instrument. Object transport systems are driven typically by the magnetic field and the conveyer belt. Recent industry requires more faster and efficient transport system. However, conventional transport systems are not adequate for transportation of optical elements and semiconductors. Because conveyor belts can damage precision optical elements by the contact force and magnetic systems can destroy the inner structure of semiconductor by the magnetic field. In this paper, the levitation transport system using ultrasonic wave is developed for transporting precision elements without damages. This transport system is using 2-mode ultrasonic wave excitation and flexural beam modes shapes are evaluated. It compared simulation results with experimental results

  • PDF

CdS센서의 보상에 의한 자기부상 시스템의 성능 개선 (Performance Improvement of Magnetic Levitation System by CdS Sensor Compensation)

  • 나승유;최윤영;박민상;윤두현;정병두
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.1133-1136
    • /
    • 1999
  • A magnetic levitation control system is inherently nonlinear and very unstable. Thus there should be a stabilizing compensator network and a negative feedback path using noncontact photoresistor or ultrasonic sensors for the levitation operation. Since the photo sensor plays a key role in the system, the steady-state error and transient performance of the overall system depend on the characteristics of the sensors. But the sensor itself also suffers from nonlinearity, and the magnitude of sensor input heavily depends on environmental conditions. To improve the output performance, we added a linearizing circuit for the sensor characteristics and a disturbance cancelation circuit to avoid sensitive output due to extraneous interfering light.

  • PDF

초음파 이송시스템의 진행파에 따른 이송 방향 예측 및 해석 (Estimation and Analysis of Transport Direction according to Traveling Wave in Ultrasonic Transport System)

  • 정상화;김광호;신상문
    • 한국공작기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.30-37
    • /
    • 2008
  • An object transport system is driven by a conveyor belt system or a magnetic levitation system. It is an indispensable device in many fields and especially it is very important in the factory automation. However, the conventional transport system can damage precision optical components by the contact force and destroy the inner structure of semiconductor by the magnetic field. The new transport system for transporting without damage is required. The ultrasonic transport system is a device that transports objects on the elastic body using ultrasonic wave. In this paper, an object transport system using the ultrasonic wave is developed for transporting precision elements without damage. Traveling waves are generated by the ultrasonic wave generator fixed in both ends of the beam. The traveling wave of the ultrasonic transport system is theoretically analyzed. Transport direction of the object is examined according to phase difference and frequency. The theoretical results are verified by experiments.

초음파 이송 장치의 광소자 픽업 메커니즘에 관한 연구 (A study on Optical Element Pick-up Mechanism of Ultrasonic Transport System)

  • 정상화;김광호;신상문;이상희;김주환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.327-328
    • /
    • 2006
  • Recently, as the infocomindustry is developed, the semiconductor industry as well as the optical industry such as the optical communication and the optical instrument is developed rapidly. The transmission, storage and processing of information has been reaching an limit because amounts of information increase rapidly. The more quickly the optical communication is developed, the more sharply the demand of optical elements increase. The transport and inspection process is time consuming and the error rate is high, because this process are not automated in case of an optical lens. In this paper, the pick-up system that can hold optical elements and be transferred by the ultrasonic transport system is developed. The inspection system that distinguishes between the existence and the nonexistence of a defect is connected easily to pick-up system. The pick-up system separates the optical glass lens by results of the inspection. The automation program is developed by visual c++ programming.

  • PDF

초음파를 이용한 광소자 이송시스템의 빔형상에 따른 이송특성에 관한 연구 (A Study on the Transportation Characteristics according to Beam Shape of Optical Lens Transport System using Ultrasonic Wave)

  • 정상화;최석봉;차경래;송석;김광호
    • 한국공작기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.8-14
    • /
    • 2006
  • The object transport system is used in many industry field such as the conveyor belt, which transports huge goods in container harbor, the magnetic levitation system, and the indexing system which transports precision components such as semiconductor and optical components. In conventional transport system, the magnetic field may damage semiconductor and the contact force may scratch on the optical lens. So ultrasonic wave transport system has been proposed to replace the previous transport system. In this paper, the good transport condition of optical lens is obtained according to the flexural beam shapes. The working frequency and transport speed are measured and the vibration characteristics of the flexural beams are investigated by Laser Scanning Vibrometer.