• Title/Summary/Keyword: Ultrasonic Distance

Search Result 408, Processing Time 0.027 seconds

A Long Range Accurate Ultrasonic Distance Measurement System by Using Period Detecting Method (주기인식 검출방식을 이용한 장거리 정밀 초음파 거리측정 시스템 개발)

  • Lee, Dong-Hwal;Kim, Su-Yong;Yoon, Kang-Sup;Lee, Man-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.41-49
    • /
    • 2007
  • In this paper, we proposed a new ultrasonic distance measurement system with high accuracy and long range. To improve accuracy and enlarge range, the time of flight of ultrasonic is calculated by the period detecting method. In the proposed ultrasonic distance measurement system, the ultrasonic transmitter and receiver are separated but synchronized by RF(Radio frequency) module. The experiment has been implemented from short distance 1m to maximum available distance 30m. And the period detecting method is compared with the conventional threshold level method. Experimental results show the accuracy and range of the distance measurement are improved by this period detecting method.

Development of Robust Single Ultrasonic Module for Distance Measurement of Mobile Robot (이동로봇의 거리측정을 위한 고성능 일체형 초음파 모듈 개발)

  • Choi, Jong-Hoon;Shim, Hyeon-Min;Ryu, Je-Goon;Lee, Eung-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.418-420
    • /
    • 2005
  • This paper proposed ultrasonic distance measurement module development for correct distance detection with collision escaping or obstacle of mobile robot is traveling self-regulation. Representative ultrasonic module applied in existing was Polaroid company's 6500 series and Devantech company's SRF04/SRF08 series. This ultrasonic sensors are corrupted by systematic errors due mainly to the dependency of sound speed upon surrounding conditions and random errors of uncertain origin. Therefore Ultrasonic distance detecting means of error compensation method and high definition, narrow beam angle, board area distance detecting means to apply to ultrasonic mobile robot control urgently need. In this paper use internal type temperature compensation method to improve problem of ultrasonic distance measurement method instead of that volume that have shortcoming of used correct temperature compensation methods applied big addition device. Compensate error by environment change of temperature. Humidity density etc. and is applicable to mobile robot offering various interface and real-time processing developed possible distance measurement module.

  • PDF

A Distance Estimation Algorithm Based on Multi-Code Ultrasonic Sensor and Received Signal Strength (다중 코드 초음파와 전파 신호 강도를 이용한 거리 측정)

  • Cho, Bong-Su;Kim, Phil-Soo;Moon, Woo-Sung;Baek, Kwang-Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.149-156
    • /
    • 2011
  • This paper reveals a distance estimation algorithm based on multi-code ultrasonic and wireless sensor network. For measuring the distances among the sensor nodes, each ultrasonic transmitter transmits multi-code ultrasonic signal simultaneously. Receivers use cross correlation method to separate the coded signals. The information of measured distances is broadcasted to each sensor node by wireless sensor network. The wireless sensor network measures the distance among the sensor nodes using the received signal strength of the broadcasting. The multi-code ultrasonic have a limitation of measurable distance. And the received signal strength is affected from an environment. This paper measures a distance using ultrasonic and a received signal strength in short range. These measured data are applied to the least square estimation algorithm. By the expansion of the fitting curve, a distance measurement in long range using the received signal strength is compensated. The coupled system reduce the error to an acceptable level.

Comparison of an ultrasonic distance sensing system and a wire draw distance encoder in motion monitoring of coupled structures

  • Kuanga, K.S.C.;Hou, Xiaoyan
    • Coupled systems mechanics
    • /
    • v.5 no.2
    • /
    • pp.191-201
    • /
    • 2016
  • Coupled structures are widely seen in civil and mechanical engineering. In coupled structures, monitoring the translational motion of its key components is of great importance. For instance, some coupled arms are equipped with a hydraulic piston to provide the stiffness along the piston axial direction. The piston moves back and forth and a distance sensing system is necessary to make sure that the piston is within its stroke limit. The measured motion data also give us insight into how the coupled structure works and provides information for the design optimization. This paper develops two distance sensing systems for coupled structures. The first system measures distance with ultrasonic sensor. It consists of an ultrasonic sensing module, an Arduino interface board and a control computer. The system is then further upgraded to a three-sensor version, which can measure three different sets of distance data at the same time. The three modules are synchronized by the Arduino interface board as well as the self-developed software. Each ultrasonic sensor transmits high frequency ultrasonic waves from its transmitting unit and evaluates the echo received back by the receiving unit. From the measured time interval between sending the signal and receiving the echo, the distance to an object is determined. The second distance sensing system consists of a wire draw encoder, a data collection board and the control computer. Wire draw encoder is an electromechanical device to monitor linear motion by converting a central shaft rotation into electronic pulses of the encoder. Encoder can measure displacement, velocity and acceleration simultaneously and send the measured data to the control computer via the data acquisition board. From experimental results, it is concluded that both the ultrasonic and the wire draw encoder systems can obtain the linear motion of structures in real-time.

Comparison of Ultrasonic Velocities between Direct and Indirect Methods on 30 mm × 30 mm Spruce Lumber

  • OH, Sei Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.562-568
    • /
    • 2020
  • This study investigates the relationship between ultrasonic velocity and density in the direct method, the effect of distance between transducers in the indirect method, and the difference between the direct and indirect methods with transducers placed at a distance of 200 mm in nondestructive ultrasonic testing of spruce lumber. The direct method using 54 kHz ultrasonic transducers was applied to two planes, namely, radial section (LR) and tangential section (LT) of samples. The indirect method measurements were taken using the same transducers. Two velocities were measured at the top and bottom of the LT plane and at the two sides of the LR plane; the two values for each plane were averaged. The relationship between density and ultrasound velocity in the direct method demonstrated a positive correlation between the two variables. The difference between the two planes, LT and LR, was not statistically significant. Moreover, the distance between the transducers in the indirect method affected ultrasound velocity, with the ultrasonic velocity increasing as the distance between the transducers became larger. A transducer distance of 200 mm yielded a close approximation of the direct method results with a ratio of 0.87. Finally, no statistical evidence of a difference between the two planes in the indirect method was found. If the direct method, which requires access to two surfaces, is impractical, the indirect method can be applied.

A Study on the Wet Type Ultrasonic Flow-meter System Development (습식방식의 초음파 유량계 시스템 개발에 관한 연구)

  • Lee Eung-Suk;Kwon Oh-Hoon;Rho Myung-Hwan;Lee Hyung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1638-1644
    • /
    • 2005
  • This paper suggests fur the study on a fluid velocity measuring system using ultrasonic transducer. In general, the time difference method to measure the distance between transducers has been known. In this paper, the practical technology for manufacturing ultrasonic flow meter system is studied using the time difference method. The ultrasonic transducer was designed and manufactured. The transmission and receiving algorithm for ultrasonic signal was studied. The ultrasonic flow measuring system was experimented in laboratory using a water reservoir for verifying the distance measuring accuracy. Finally, it was tested in flow calibration laboratory for the velocity measuring performance. The system, designed in this study, showed 0.3 mm resolution in distance measurement. For precise flow measurement, a high speed triggering algorithm is required for ultrasonic signal receiving.

A Basic Study of Cane To Assist Blind Walker with ultrasonic Sensor (초음파 센서를 이용한 시각장애자용 보행유도 지팡이에 관한 기초연구)

  • Kim, S.Y.;Kim, D.W.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.411-413
    • /
    • 2002
  • In this paper we researched about the ultrasonic cane which aids the blind to walk. We used ultrasonic in recognizing the object and implemented pulse counting method in measuring the distance. The distance measuring system consists of transmitter unit, receiver unit and micro-processor. We used broadband ultrasonic sensors in transmitter unit and receiver unit. The blind is able to recognize the distance between obstacles and himself as it used a vibration system.

  • PDF

Predicting the Firmness of Apples using a Non-contact Ultrasonic Technique

  • Lee, Sangdae;Park, Jeong-Gil;Jeong, Hyun-Mo;Kim, Ki-Bok;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.38 no.3
    • /
    • pp.192-198
    • /
    • 2013
  • Purpose: Methods for non-destructive estimation of product quality have been reported in various industrial fields, but the application of ultrasonic techniques for the agricultural products of potatoes, pears, apples, watermelons, kiwis and tomatoes etc. have been rarely reported since the application of a contact-type ultrasonic transducer in agricultural products is very difficult. Therefore, this study sought to determine the firmness of apples using non-contact ultrasonic techniques. Methods: For this experiment, an ultrasonic experimental tester using a non-contact ultrasonic transducer was created, and a signal processing program was used to analyze the acquired ultrasonic reflected signal. Also, a universal testing machine was used to measure firmness parameters of the apples such as bioyield strength, a firmness factor, after the ultrasonic tests had been performed. Results: Six distance correction factors were calculated to obtain consistent values of ultrasonic properties regardless of the distance between the transducer and the surface of the subject. We developed prediction models of the bioyield strength using the distance correction factors. Conclusions: The optimum prediction model of the bioyield strength of apples using a non-contact ultrasonic technique was a multiple regression model ($R^2=0.9402$).

USAT(Ultrasonic Satellite System) for the Autonomous Mobile Robots Localization (무인 이동 로봇 위치추정을 위한 초음파 위성 시스템)

  • Lee, Dong-Hwal;Kim, Su-Yong;Yoon, Kang-Sup;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.10
    • /
    • pp.956-961
    • /
    • 2007
  • We propose a new distance measurement method and local positioning system for the autonomous mobile robots localization. The distance measurement method is able to measure long-range distances with a high accuracy by using ultrasonic sensors. The time of flight of the ultrasonic waves include various noises is calculated accurately by the proposed period detecting method. The proposed local positioning system is composed of four ultrasonic transmitters and one ultrasonic receiver. The ultrasonic transmitter and receiver are separated but they are synchronized by RF (Radio frequency) signal. The proposed system using ultrasonic waves is represented as USAT(Ultrasonic Satellite System). USAT is able to estimate the position using the least square estimation. The experimental results show that the proposed local positioning system enables to estimate the absolute position precisely.

Computer Simulation of Multiple Reflection Waves for Thickness Measurement by Ultrasonic Spectroscopy (초음파 Spectroscopy에 의한 두께측정을 위한 다중반사파의 시뮬레이션)

  • Park, I.G.;Han, E.K.;Choi, M.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.12 no.1
    • /
    • pp.9-15
    • /
    • 1992
  • Ultrasonic spectroscopy is likely to become a very powerful NDE method for detection of microfects and thickness measurement of thin film below the limit of ultrasonic distance resolution in the opaque materials, provides a useful information that cannot be obtained by a conventional ultrasonic measuring system. In this paper, we considered a thin film below the limit of ultrasonic distance resolution sandwitched between two substances as acoustical analysis model, demonstrated the usefulness of ultrasonic spectroscopic analysis technique using information of ultrasonic frequency for measurements of thin film thickness, regardless of interference phenomenon and phase reversion of ultrasonic waveform. By using frequency intervals(${\triangle}f$) of periodic minima from the ratio of reference power spectrum of reflective waveform obtained a sample to power spectrum of multiple reflective waves obtained interference phenomenon caused by ultrasonic waves reflected at the upper and lower surfaces of a thin layer, can measured even dimensions of interest are smaller than the ultrasonic wave length with simplicity and accuracy.

  • PDF