• Title/Summary/Keyword: Ultrasonic Displacement

Search Result 128, Processing Time 0.037 seconds

Trajectory of Elliptical Displacement of L1-B4 Type Linear Ultrasonic Motor using Multilayer Piezoelectric Actuator (적층형 압전 액츄에이터를 이용한 L1-B4형 선형 초음파 리니어 모터의 타원변위궤적)

  • Lee, Kab-Soo;Yoo, Ju-Hyun;Hwang, Eun-Sang;Park, Durk-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.49-52
    • /
    • 2008
  • In this study, multilayer structured ultrasonic linear motor was simulated using Atila for investigating its optimum driving conditions. The ultrasonic linear motors mainly consist of an ultrasonic vibrator to generate elliptical displacement. The ultrasonic linear motor simulated in this paper was the use of the 1st longitudinal(Ll) and 4th bending vibrations (B4). Whit the increase of the number of piezoelectric actuator layers, displacement of node was increased. Maximum total displacement of node was about $3,91{\mu}m$ at the 13 layered ultrasonic motor under 5 V.

Fabrication and Simulation of Displacement Properties of Ultrasonic Generator Handpiece (초음파 절삭기 핸드피스부 제작 및 변위 특성 시뮬레이션)

  • Kim, Seung-Won;Yoo, Ju-Hyun;Lee, Jie-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.3
    • /
    • pp.152-155
    • /
    • 2018
  • Ultrasonic wave technologies have been widely used in ultrasonic washing machines, ultrasonic surgery, ultrasonic welding machines, ultrasonic sensors, and medical instruments. Ultrasonic surgery can be realized through the cavitation effect of ultrasonic waves. In this study, piezoelectric ceramics were manufactured to achieve the optimum design of a piezoelectric vibrator in a handheld generator for ultrasonic surgery. The best specimen showed the excellent piezoelectric properties of kp=0.624, Qm=1,531, and $d_{33}=356pC/N$. Numerical modeling based on the finite element method was performed to find the resonance frequency, the anti-resonance frequency, and the displacement properties of the handheld ultrasonic generator. Maximum displacement was observed in the six-step piezoelectric vibrator at $6.36{\mu}m$.

Analysis of Linear-type Ultrasonic Motor Using A Finite Element Method (유한요소해석 프로그램에 의한 리니어 초음파 모터의 변위량 해석)

  • 이동준;임태빈;강성택;김영욱;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.33-36
    • /
    • 1998
  • This paper is a study on a linear ultrasonic motor with a first longitudinal$(L_1)$ and fourth bending $(B_4)$ double-mode rectangular plate. The stator vibrator is composed of an elastic material plate and of a piezo-ceramic element having a motion by electrical excitation. Each strain vector differs by $90^{\circ}$ generate travelling wave with the elliptical displacement motion of a point on the surface. To magnify displacement of longitudinal direction in elliptical displacement motion, the motor has a mechanism of the.displacement enlargement. In this paper, the vibration shape of the stator is simulated using the finite element method. A detailed model considered of the piezoelectric effect and of the exact geometry of the stator is used to calculate the displacement. The position of displacement mechanism is decided by the maximum displacement.

  • PDF

A Development of Displacement Measurement System using Ultrasonic Sensor (초음파 센서를 이용한 변위 측정 시스템 개발)

  • Kim, Jung-Sup;Kim, Sang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.142-145
    • /
    • 1995
  • This paper is to develop a measurement system of the displacement distance using ultrasonic sensors. Two 400KHz ultrasonic sensors are used for realizing the measurement system, such as one sensor transmits the sine wave and the other sensor receives this wave. The displacement is measured by the phase difference between transmitting and receiving signals. A phase defecter transforms phase difference to voltage. Because the output voltage pattern has nonlinear characteristics, the relations of the voltage and the distance are learned by a neural network. As the results of teaming, the efficiency of measurement system is improved. This system can measure the displacement distance at the accuracy of 1 micrometer level.

  • PDF

A Study on the Ultrasonic Technique for Measurement of Vibration in Journal Bearing (저어널 베어링의 진동 계측을 위한 초음파 응용 기술에 관한 연구)

  • 김노유
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.476-481
    • /
    • 1999
  • This paper describes a new technique for measurement of the displacement less than one-quarter of the wavelength of ultrasonic wave using ultrasonic pulse-echo method. The technique determines the displacement of a journal bearing from the amplitudes of the total reflected waves from the surface of journal inside the bearing. Vibration of journal bearing can be measured without using a very high frequency ultrasonic transduce over 100MHz which must be used in the conventional techniques for the precision measurement of a small displacement. The method also requires no inversion process to extract the thickness from the waveforms of the reflected waves, so that it makes possible on-line measurement of the vibration of journal bearing.

  • PDF

Fabrication and FEM Analysis of Wind-Mill Type Ultrasonic Motors using Piezoelectric Ceramics (압전 세라믹스를 이용한 풍차형 초음파모터의 제작과 유한요소해석)

  • 강형우;이상기;박태곤
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.373-376
    • /
    • 2000
  • The modified Moonie(Cymbal) transducer has been investigated for an accelerometer application. This paper present a wind-mill type ultrasonic motors using ternary piezoelectric ceramics and aluminum endcaps applied by cymbal transducer. The maximum displacement was increased depend on applied voltage and layer number. The multi-layer was fabricated by tape casting using doctor-blade process. The maximum displacement of multi-layered ultrasonic motor was much higher than that of one-layered.

  • PDF

The Comparison of the Characteristics of Displacement Isolines in the Cylindrical Green Compact under Ultrasonic Vibration

  • Prakorb, Chartpuk;Anan, Tempiam;Somchai, Luangsod;Vorawit, Voranawin
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.120-126
    • /
    • 2015
  • This research is a comparison of the characteristics of the displacement isolines due to powder-die-wall friction that arise during the compaction of ceramic powders in conventional die. It has been done using the CosmosWorks software package of the SolidWorks simulation software. The results of comparative simulation with FEM showed that the comparison of the displacement isolines and distribution of deformation of the ceramic powders. In the case of conventional uniaxial dry compaction for long length cylindrical green compact, considerable bending of the layers in the form of a cone can be observed. It is symmetry along centerline of cylindrical green compact. The distributions of the deformation of the green compacts (diameter 14 mm, height 20 mm) as a result of conventional compaction under ultrasonic vibration with power 1 and 2 kW are reduced to 4% and 6.5% when compared with conventional compaction without ultrasonic vibration respectively. Thus, density distribution can be minimized by increasing the power of ultrasonic vibration.

Measurement of Absolute Displacement-Amplitude of Ultrasonic Wave Using Piezo-Electric Detection Method (압전형 수신 기법을 이용한 초음파 절대변위진폭 측정)

  • Park, Seong-Hyun;Kim, Jongbeom;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.37 no.1
    • /
    • pp.7-12
    • /
    • 2017
  • A nonlinear ultrasonic parameter is defined by the ratio of displacement amplitude of the fundamental frequency component to that of the second-order harmonic frequency component. In this study, the ultrasonic displacement amplitude of an SUS316 specimen was measured via a piezo-electric-based method to identify the validity of piezo-electric detection method. For comparison, the ultrasonic displacement was also determined via a laser-based Fabry-Pérot interferometer. The experimental results for both measurements were in good agreement. Additionally, the stability of the repeated test results from the piezo-electric method exceeded that of the laser-interferometric method. This result indicated that the piezo-electric detection method can be utilized to measure a nonlinear ultrasonic parameter due to its excellent stability although it involves a complicated process.

Design and FEM Analysis of Ultrasonic Linear Motor (초음파리니어 모터의 설계 및 해석)

  • Kim, Hang-Sik;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.728-731
    • /
    • 2003
  • This paper deals with a flat type ultrasonic motor, which uses a longitudinal-bending multi mode vibrator of rectangular form. A linear ultrasonic motor was designed by combination of the first longitudinal and eighth bending mode, and the motor consisted of a straight aluminum alloy bar bonded with piezoelectric ceramic elements as a driving element. The geometrical dimensions of the rectangular aluminum vibrator were determined by Euler-Bernoulli theory ANSYS was used to analyze the resonance frequency and the displacement of the stator vibrator. The resonance frequency of the motor provides the elliptical motion. and ANSYS was used to analyze elliptical motion and elliptical trajectory of stator vibrator when thickness of piezoelectric ceramics was varied respectively 0.763, 1.526, 2.289[mm] and width of stator vibrator was varied respectively 16, 12, 8, 4[mm]. When thickness of piezoelectric ceramics was decreased, the displacement of the stator vibrator was increased. And when width of stator vibrator was decreased, the displacement of the stator vibrator was increased.

  • PDF

Design and Displacement Analysis by ANSYS of Ultrasonic Linear Motor (초음파 리니어 모터의 설계와 ANSYS에 의한 변위량해석)

  • 김태열;강도원;김범진;박태곤;김명호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.300-302
    • /
    • 1999
  • The standing waves of the fourth bending mode of vibration and first longitudinal mode of vibrator were utilized to construct a ultrasonic linear motor. The geometrical dimensions of the vibrator were determined by Euler-Bernoulli theoty. FEM(finite element method) employed to calculate the vibration mode of the metal-piezoceramic composite thin plate vibrator. ANSYS was used to design positions of the projections and calculate displacement of vibrator.

  • PDF