• 제목/요약/키워드: Ultrasonic Cavitation

검색결과 98건 처리시간 0.029초

주증기계통 오리피스 후단 소구경 배관의 감육 및 누설 발생 (Cause Analysis for the Wall Thinning and Leakage of a Small Bore Piping Downstream of an Orifice)

  • 황경모
    • Corrosion Science and Technology
    • /
    • 제12권5호
    • /
    • pp.227-232
    • /
    • 2013
  • A number of components installed in the secondary system of nuclear power plants are exposed to aging mechanisms such as FAC (Flow-Accelerated Corrosion), Cavitation, Flashing, and LDIE (Liquid Droplet Impingement Erosion). Those aging mechanisms can lead to thinning of the components. In April 2013, one (1) inch small bore piping branched from the main steam line experienced leakage resulting from wall thinning in a 1,000 MWe Korean PWR nuclear power plant. During the normal operation, extracted steam from the main steam line goes to condenser through the small bore piping. The leak occurred in the downstream of an orifice. A control valve with vertical flow path was placed on in front of the orifice. This paper deals with UT (Ultrasonic Test) thickness data, SEM images, and numerical simulation results in order to analyze the extent of damage and the cause of leakage in the small bore piping. As a result, it is concluded that the main cause of the small bore pipe wall thinning is liquid droplet impingement erosion. Moreover, it is observed that the leak occurred at the reattachment point of the vortex flow in the downstream side of the orifice.

Development of wall-thinning evaluation procedure for nuclear power plant piping - Part 2: Local wall-thinning estimation method

  • Yun, Hun;Moon, Seung-Jae;Oh, Young-Jin
    • Nuclear Engineering and Technology
    • /
    • 제52권9호
    • /
    • pp.2119-2129
    • /
    • 2020
  • Flow-accelerated corrosion (FAC), liquid droplet impingement erosion (LDIE), cavitation and flashing can cause continuous wall-thinning in nuclear secondary pipes. In order to prevent pipe rupture events resulting from the wall-thinning, most NPPs (nuclear power plants) implement their management programs, which include periodic thickness inspection using UT (ultrasonic test). Meanwhile, it is well known in field experiences that the thickness measurement errors (or deviations) are often comparable with the amount of thickness reduction. Because of these errors, it is difficult to estimate wall-thinning exactly whether the significant thinning has occurred in the inspected components or not. In the previous study, the authors presented an approximate estimation procedure as the first step for thickness measurement deviations at each inspected component and the statistical & quantitative characteristics of the measurement deviations using plant experience data. In this study, statistical significance was quantified for the current methods used for wall-thinning determination. Also, the authors proposed new estimation procedures for determining local wall-thinning to overcome the weakness of the current methods, in which the proposed procedure is based on analysis of variance (ANOVA) method using subgrouping of measured thinning values at all measurement grids. The new procedures were also quantified for their statistical significance. As the results, it is confirmed that the new methods have better estimation confidence than the methods having used until now.

다이아몬드 컨디셔너를 이용한 ILD CMP에 관한 연구 (A Study on Interlayer Dielectric CMP Using Diamond Conditioner)

  • 서헌덕;김형재;김호윤;정해도
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.86-89
    • /
    • 2003
  • Chemical Mechanical Planarization(CMP) has been accepted as the most effective processes for ultra large scale integrated (ULSI) chip manufacturing. However, as the polishing process continues, pad pores get to be glazed by polishing residues, which hinder the supply of new slurry. And pad surface is ununiformly deformed as real contact distance. These defects make material removal rate(MRR) decrease with a number of polishied wafer. Also the desired within-chip planarity, within wafer non-uniformity(WIWNU) and wafer to wafer non-uniformity(WTWNU) arc unable to be achieved. So, pad conditioning in CMP Process is essential to overcome these defects. The eletroplated or brazed diamond conditioner is used as the conventional conditioning. And. allumina long fiber, the jet power of high pressure deionized water, vacuum compression. ultrasonic conditioner aided by cavitation effect and ceramic plate conditioner are once used or under investigation. But. these methods arc not sufficient for ununiformly deformed pad surface and the limits of conditioning effect. So this paper focuses on the characteristics of diamond conditioner which reopens glazed pores and removes ununiformly deformed pad away.

  • PDF

요산의 초음파 전기화학적 정량 (Sono-electrochemical Determination of Uric Acid)

  • 조형화;배준웅
    • 전기화학회지
    • /
    • 제3권4호
    • /
    • pp.232-234
    • /
    • 2000
  • 전기화학적인 방법으로 요산을 정량함에 있어서 전극의 활성을 증가시키기 위하여 초음파를 조사하여 요산의 정량을 시도하였다. 요산의 정량의 최적조건을 조사하기 위하여 초음파의 세기, 시간, 전해질 용액의 pH, 온도 등의 영향을 조사하였고 전극의 안정성에 대해서도 조사하였다. 최적 조건은 $25.0^{\circ}C$, pH 7.0,초음파의 파워 $20W/cm^2$의 조건이었으며 $8.0{\times}10^{-6}\~5.0\times10^{-4}M$의 직선범위를 가졌고, 검출한계는 $6.5\times10^{-6}M$이었다.

다중계측기법을 이용한 원전 주증기배수밸브의 현상태 누설진단에 관한 연구 (A Study on the As-Built Leakage Diagnosis of Main Steam Drain Valves for Nuclear Power Plants by Multi-measuring Technique)

  • 김성영;김영범;김도형;이상국
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2606-2611
    • /
    • 2008
  • The high energy fluid leakage from the high temperature and high differential pressure drop system of NPPs (Nuclear Power Plants) decreases efficiency and consequently leads to considerable economic loss due to less power production. Also, the leakage possibly damages critical parts of components such as valve and trim with the effect of cavitation, flashing, and erosion, etc. and deteriorates its performance. Thus, in this study, we diagnosed the as-is leakage for four (4) main steam drain valves and two (2) steam traps of Yonggwang 1,2 units during normal operation by using multi-measuring technique and observed the occurrence of fine leakage. In the course of measuring fluid leakage, the sign of fine leakage is estimated to be the leakage from orifice. By converting the leakage to energy loss, it is equivalent to the amount of several hundred thousand won per each unit, which supports the basis for the justification of fine leakage.

  • PDF

연속저주파를 이용한 미세조류 파쇄 (Analysis of Cell Disruption in Microalgae Using Continuous Low Frequency Non-Focused Ultrasound)

  • 최준혁;김광호;박종락;정상화
    • 한국기계가공학회지
    • /
    • 제20권8호
    • /
    • pp.33-41
    • /
    • 2021
  • Recently, many studies have been conducted on substituting fossil fuels with bio-refineries in existing industrial systems using biomass. Among the various bio-refineries, microalgae have received wide attention because it uses inorganic compounds to produce useful substances, which are extracted by a cell disruption process. Although numerous cell disruption methods exist, cell disruption efficiency has been studied by ultrasonic treatment. Ultrasound is a high-frequency (20 kHz or higher) sound wave and causes cell disruption by cavitation when passing through a solvent. In this study, we used the microalgal species Chlorella sp., which was cultured in a plate-type photobioreactor. The experiment was conducted using a continuous low-frequency processing device. The reduction of cells with time due to cell disruption was fitted using a logistic model, and optimum conditions for highly efficient cell disruption were determined by conducting experiments under multiple conditions.

Effect of Improving Quality by Changing the Distribution Method of Shrimp Culture

  • KWON, Woo-Taeg;JUNG, Min-Jae;Woo, Hyun-Jin;LEE, Woo-Sik;KWON, Lee-Seung
    • 유통과학연구
    • /
    • 제19권4호
    • /
    • pp.53-60
    • /
    • 2021
  • Purpose: This study focuses on exploring ways to improve the distribution method of shrimp farming so that it is eco-friendly and increases the distribution of shrimp. Research design, data and methodology: The experimental device installed in a biofloc shrimp culture in one area tested 10 times. Complex odor, concentration of H2S, water quality improvement effected by decomposition of organic substances, and degree of microbial activation measured. The data of the experimental results verified using the T-test technique, and the p value was determined based on the significance probability of 0.05. Results: This experimental device was effective in reducing odor and hydrogen sulfide in shrimp farms. With the improvement of water quality, dissolved oxygen increased due to the microbubble and cavitation action of air ejector and ultrasonic waves. In addition, the cultured microorganisms in the cultured water treated by the experimental device were remarkably proliferated compared to the raw water. Conclusions: The biofloc distribution method has a significant effect on improving water quality and reducing odor substances and will become a new eco-friendly and efficient distribution method for shrimp farming in the future.

후처리된 아크 용사코팅 층의 전기화학적 및 캐비테이션 손상 특성 (Characteristics of Electrochemical and Cavitation Damage after Sealing Treatment for Arc Thermal Sprayed Coating Layer)

  • 김성종;한민수;박일초
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2014년도 추계학술대회 논문집
    • /
    • pp.300-300
    • /
    • 2014
  • 해양환경 하에서 대형 강구조물의 경우 장기간 부식손상을 방지하기 위해 아크 용사코팅 기술이 오래전부터 유용하게 이용되어 왔다. 아크 용사코팅 기술은 타 용사코팅 기술에 비해 경제성과 생산성이 뛰어나 대형 강구조물에 적용되고 있다. 용사재료로는 Al, Zn 또는 그 합금들이 주로 사용되어 강재에 대해 희생양극 방식효과를 나타낸다. 그러나 아크용사에 의해 적층된 코팅 층은 용사공정 중 불가피하게 수많은 기공과 산화물이 포함되어 내식성 및 내구성에 악영향을 미치게 된다. 따라서 본 연구에서는 알루미늄 합금의 용사코팅 층에 대하여 다양한 후처리를 통해 내식성과 더불어 내구성을 향상시키고자 하였다. 용사코팅은 알루미늄 합금 선재(1.6 ${\varnothing}$)를 사용하여 아크용사를 실시하였다. 용사 시 용사거리는 200 mm, 공기압력은 약 $7kg/cm^2$ 정도로 유지하면서 용사코팅을 실시하여 약 $200{\mu}m$ 두께로 코팅 층을 형성시켰다. 이후 용사코팅 층의 표면에 다양한 후처리재를 적용하였으며, 내구성을 평가하기 위하여 후처리 적용 전후 시험편에 대하여 캐비테이션 실험을 실시하였다. 캐비테이션 실험은 ASTM G32-92에 의거하여 주파수 20 kHz의 초음파 진동 장치(ultrasonic vibratory device)를 사용하였다. 그리고 시험편 표면과 발진 혼에 부착된 팁(tip)과의 거리는 1 mm로 일정하게 유지시킨 뒤, 캐비테이션 발생 시간을 변수로 하여 실험을 실시하였다. 손상된 용사코팅 층의 표면은 주사전자현미경과 광학현미경으로 관찰하였으며, 시험편 손상깊이는 3D 현미경으로 비교 분석하였다. 또한 캐비테이션 실험 전후의 무게를 측정하여 무게 감소량을 상호 비교하였다. 그리고 전기화학적 실험은 천연해수 속에서 자체 제작한 홀더(holder)를 이용하여 $0.33183cm^2$의 용사코팅 층만을 노출시켜 실시하였다. 그리고 기준전극은 은/염화은 전극을, 대극은 백금전극을 사용하였다. 분극실험을 통해 후처리 적용에 따른 용사코팅 층의 부식전위 및 부식전류밀도를 비교 평가하였다. 그 결과, 용사코팅 층에 의하여 강재에 대한 희생양극 방식전위가 확보되었으며, 후처리재가 적용된 용사코팅 층에서 내식성 및 캐비테이션 저항성이 향상되었다.

  • PDF