• Title/Summary/Keyword: Ultrashort Pulse

Search Result 80, Processing Time 0.081 seconds

A Novel Spectral Analysis of Ultrashort Laser Pulses Using Class-2 PRS Model (Class-2 PRS 모델을 이용한 극초단레이져펄스의 스펙트럼 분석)

  • 전진성;조형래;오용선
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.177-183
    • /
    • 1999
  • In this paper, we analyze transmission characteristics of ultrashort laser pulses using the property of Raised-cosine pulse which are systematically obtained following Class-2 PRS model. The high-order pulses are easily derived front a modified PRS system model as Class-1 PRS model. This may be based on the fact that the spectra and bandwidths of the high-order pulses are beautifully related to their orders. And we make clear they are very useful to cover wider area and more accurate transmission characteristics of ultrashort pulses than Gaussian or Sech pulse approximations used conventionally. First modifying the generalized PRS system model, we propose a new model for deriving any type of high-order pulse. And we offer a novel analysis method of ultrashort pulse transmission which has any shape and FWHM, using the proposed model. In addition, by fixing the pulse range $\tau$=1(ps) and varying the order of the pulse from n=1 to n=100, we obtain spectra of ultrashort pulses with 1(ps)-100(fs) FWHM's, and width of FWHM in the Class-2 PRS model 50~100(fs) smaller than Class-1 PRS model. As a one-step further, we derive PSD's of their pulse trains when they are applied to Unipolar signaling scheme. These PSD's are derided in the range of possible pulse intervals. All of these results are not only coincided with some conventional experimental works but also will to applied to any pioneering ultrashort pulse in the future.

  • PDF

Measurement and Prediction of Damage Threshold of Gold Films During Femtosecond Laser Ablation

  • Balasubramani, T.;Kim, S.H.;Jeong, S.H.
    • Laser Solutions
    • /
    • v.11 no.4
    • /
    • pp.13-20
    • /
    • 2008
  • The damage threshold measurement of gold films is carried out with ultrashort-pulse laser. An enhanced two temperature model is developed to encounter the limitation of linear modeling during ultrashort pulse laser ablation. In which the electron heat capacity is calculated using a quantum mechanical approach based on a Fermi-Dirac distribution, temperature-dependent electron thermal conductivity valid beyond the Fermi temperature is adopted, and reflectivity and absorption coefficient are estimated by applying a temperature-dependent electron relaxation time. The predicted damage threshold using the proposed enhanced modelclosely agreed with experimental results, demonstrating the importance of considering transient thermal and optical properties in the modeling of ultrashort pulse laser ablation.

  • PDF

Numerical Analysis of Ultrashort Pulse Propagation in Optical Fiber using by LabVIEW (LabVIEW를 이용한 광섬유에서 극초단 펄스 전파의 수치해석)

  • Hwang, Dae-Seok;Lee, Ho-Guen;Lee, Young-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.431-434
    • /
    • 2005
  • LabVIEW를 사용하여 광섬유에서의 극초단 펄스 전파의 특성에 관한 연구를 수행하였다. 수치해석을 위해 1550nm의 극초단 광원을 Silica재질의 광섬유에 도파시키고 Split Step Fourier 방법을 이용하여 전파특성을 계산하였다.

  • PDF

Tip-enhanced Electron Emission Microscopy Coupled with the Femtosecond Laser Pulse

  • Jeong, Dahyi;Yeon, Ki Young;Kim, Sang Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.891-894
    • /
    • 2014
  • The ultrashort electron pulse, laser-emitted from the metal tip apex has been characterized and used as a probing source for a new electron microscope to visualize the morphology of the gold-mesh in the nanometric resolution. As the gap between the tungsten tip and Au-surface is approached within a few nm, the large electromagnetic field enhancement for the incident P-polarized laser pulse with respect to the tip-sample axis is strongly observed. Here, we demonstrate that the time-resolved tip-enhanced electron emission microscope (TEEM) can be implemented on the laboratory table top to give the two-dimensional image, opening lots of challenges and opportunities in the near future.

High Power 1.83 GHz Femtosecond Yb-doped Fiber Laser Incorporating Repetition Rate Multipliers

  • In Chul Park;Eun Kyung Park;Ye Jin Oh;Hoon Jeong;Ji Won Kim;Jeong Sup Lee
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.732-737
    • /
    • 2023
  • A high-power Yb-doped femtosecond (fs) fiber laser at a repetition rate of 1.83 GHz is reported. By employing a 5-stage repetition rate multiplier, the repetition rate of the mode-locked master oscillator was multiplied from 57.1 MHz to 1.83 GHz. The ultrashort pulse output at 1.83 GHz was amplified in a two-stage Yb-doped fiber amplifier, leading to >100 W of fs laser output with a pulse duration of 290 fs. The theoretical pulse width along the fiber was simulated, showing that it was in good agreement with experimental results. Further improvement in power scaling is discussed.

Novel Design of Ultrashort Pulse Excimer Laser Amplifier System II (Temporal Gain Control and Phase Distortion/ASE Characteristics)

  • Lee, Young-Woo
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.4
    • /
    • pp.228-232
    • /
    • 2003
  • The previous design work for very large final amplifier pumped by electron beam module was described from the point of view of energy characteristics. In this work, the design problems for phase front distortion, ASE, and gain control in large aperture amplifier are presented in detail.

Efficient keV X-ray Generation from Irradiation of in-situ Produced Silver Clusters by Ti:sapphire Laser Pulses

  • Chakravarty, U.;Naik, P.A.;Kumbhare, S.R.;Gupta, P.D.
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.80-85
    • /
    • 2009
  • An experimental study of energy absorption and x-ray emission from ultrashort laser pulse irradiation of in-situ produced solid clusters has been performed. Silver clusters produced by a 30 mJ, 300 ps laser pulse were irradiated up to an intensity of $3{\times}10^{17}\;W/cm^2$ by a 70 mJ, 45 fs compressed laser pulse from the same Ti:sapphire laser. Absorption of the laser light exceeding 70% was observed, resulting in an x-ray yield (>1 keV) of ${\sim}60{\mu}J$ pulse. This may constitute a much simpler means of intense x-ray generation using ultrashort laser pulses as compared to the irradiation of structured / pre-deposited cluster targets, and it offers higher x-ray conversion efficiency than that from gas clusters and planar solid targets.

Numerical Study on Frequency Up-conversion in USPR using MATLAB

  • Roh, Young-Su
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.497-502
    • /
    • 2010
  • In this paper, the O-mode ultrashort-pulse reflectometry (USPR) millimeter-wave signals that propagate into the plasma and cover a frequency bandwidth of 33-158 GHz are examined numerically using MATLAB. Two important processes are involved in the computation: the propagation of the USPR impulse signal through a waveguide and the frequency up-conversion using millimeter-wave mixers. These mixers are limited to intermediate frequency signals that are less than 500 mV; thus, it is necessary to disperse the impulse signal into a chirped waveform using the waveguide. The stationary phase method is utilized to derive a closed-form formula for a chirped waveform under the assumption that the USPR impulse is Gaussian. In the process of frequency up-conversion, the chirped waveform is mixed with the mixer LO signal, and the lower frequency components of the RF signal are removed using high pass filters.