• Title/Summary/Keyword: Ultrafine particles

Search Result 165, Processing Time 0.02 seconds

An Experimental Study on the Spray and Lean Combustion Characteristics of Bio-enthanol-Gasoline Blended Fuel of GDI (직접분사식 바이오에탄올-가솔린 혼합연료의 분무 및 희박연소 특성에 관한 실험적 연구)

  • Park, Gi-Young;Kang, Seok-Ho;Kim, In-Gu;Lim, Cheol-Soo;Kim, Jae-Man;Cho, Yong-Seok;Lee, Seong-Wock
    • Journal of ILASS-Korea
    • /
    • v.19 no.3
    • /
    • pp.115-122
    • /
    • 2014
  • As a demand for an automobile increases, air pollution and a problem of the energy resources come to the fore in the world. Consequently, governments of every country established ordinances for green-house gas reduction and improvement of air pollution problem. Especially, as international oil price increases, engine using clean energy are being developed competitively with alternative transportation energy sources development policy as the center. Bio ethanol, one of the renewable energy produced from biomass, gained spotlight for transportation energy sources. Studies are in progress to improve fuel supply methods and combustion methods which are key features, one of the engine technologies. DI(Direct Injection), which can reduce fuel consumption rate by injecting fuel directly into the cylinder, is being studied for Green-house gas reduction and fuel economy enhancement at SI(Spark Ignition). GDI(Galoine Direct Injection) has an advantage to meet the regulations for fuel efficiency and $CO_2$ emissions. However it produces increased number of ultrafine particles, that yet received attention in the existing port-injection system, and NOX. As fuel is injected into the cylinder with high-pressure, a proper injection strategy is required by characteristics of a fuel. Especially, when alcohol type fuel is considered. In this study, we tried to get a base data bio-ethanol mixture in GDI, and combustion for optimization. We set fuel mixture rate and fuel injection pressure as parameters and took a picture with a high speed camera after gasoline-ethanol mixture fuel was injected into a constant volume combustion chamber. We figured out spraying characteristic according to parameters. Also, we determine combustion characteristics by measuring emissions and analyzing combustion.

Bone-like Apatite Formation on Ultrafine-Structure in Modified Electrolytic Solution

  • Jang, Jae-Myung;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.155-155
    • /
    • 2017
  • Surface modifications are commonly utilized to adjust the properties of the titanium and its alloy surface to the specific needs of the medical applications, but there are disadvantages such as poor osteoconductive properties and low adhesion of bone cell to implant surface. In order to improve these disadvantages, changes in surface properties have an important effect on osseointegration during implantation. In this paper we applied new technological method for improving a unique surface modification using the characteristic of an electrolytic Solution. Thus, in the electrolyte containing NaF in Na2SO4, TiO2 nanoporous was uniformly formed, and HAp nanoparticles were electrodeposited around the TiO2 nanopores, but in the electrolyte containing NH4F in (NH4)H2PO4, the coarse protrusions including HAp nano particles were regularly deposited onto the TiO2 barrier layer. The surface characteristics and the distributed elements and have been investigated by EDS analysis, and ultra-fine structure of surface are carried out using FE-SEM. To investigate the behavior of the anion, the analysis of chemical states was performed by XPS, and the narrow spectrums for Ti2P, Ca 2p, and P 2p seems to be almost similar depending on the characteristics of the electrolyte solution respectively. In addition, Ca 2p spectrum could be resolved into two peaks for Ca 2p3/2 and 2p1/2 at 347.4 and 351.3 eV, which are related to hydroxyapatite. And, the P peak can also be deconvoluted into two peaks for P1/2 and P3/2 levels with binding energy 134.2 and 133.4 eV, respectively. From the result of soaking test, the apatite morphologys were well-formed onto the modified surface according to the different conditions.

  • PDF

Synthesis of Fine Copper Powders from CuO-H2O Slurry by Wet-reduction Method (액상환원법에 의한 CuO-H2O 슬러리로부터 미세 구리분말의 제조)

  • Ahn Jong-Gwan;Kim Dong-Jin;Lee Ik-Kyu;Lee Jaeryeung;Huanzhen Liang
    • Journal of Powder Materials
    • /
    • v.12 no.3
    • /
    • pp.192-200
    • /
    • 2005
  • Ultrafine copper powder was prepared from $CuO-H_2O$ slurry with hydrazine, a reductant, under $70^{\circ}C$. The influence of various reaction parameters such as temperature, reaction time, molar ratio of $N_2H_4$, PvP and NaOH to Cu in aqueous solution had been studied on the morphology and powder phase of Cu powders obtained. The production ratio of Cu from CuO was increased with the ratio of $N_2H_4/Cu$ and the temperature. When the ratio of $N_2H_4/Cu$ was higher than 2.5 and the temperature was higher than $60^{\circ}C$, CuO was completely reduced into Cu within 40 min. The crystalline size of Cu obtained became fine as the temperature increase, whereas the aggregation degree of particles was increased with the reaction time. The morphology of Cu powder depended on that of the precursor of CuO and processing conditions. The average particle size was about $0.5{\mu}m$.

Fabrication of Nano-composites from the Radix of Angelica gigas Nakai by Hot Melt Extrusion Mediated Polymer Matrixs (중합체 매개 용융압출에 의한 참당귀 나노복합체의 제조)

  • Azad, Md Obyedul Kalam;Cho, Hyun Jong;Lim, Jung Dae;Park, Cheol Ho;Kang, Wie Soo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.5
    • /
    • pp.417-429
    • /
    • 2018
  • Background: The objective of this study was to make colloidal dispersions of the active compounds of radix of Angelica gigas Nakai that could be charaterized as nano-composites using hot melt extrusion (HME). Food grade hydrophilic polymer matrices were used to disperse these compound in aqueous media. Methods and Results: Extrudate solid formulations (ESFs) mediated by various HPMCs (hydroxypropyl methylcelluloses) and Na-Alg polymers made from ultrafine powder of the radix of Angelica gigas Nakai were developed through a physical crosslink method (HME) using an ionization agent (treatment with acetic acid) and different food grade polymers [HPMCs, such as HP55, CN40H, AN6 and sodium alignate (Na-Alg)]. X-ray powder diffraction (XRD) analysis confirmed the amorphization of crystal compounds in the HP55-mediated extrudate solid formulation (HP55-ESF). Differential scanning calorimetry (DSC) analysis indicated a lower enthalpy (${\Delta}H=10.62J/g$) of glass transition temperature (Tg) in the HP55-ESF than in the other formulations. Infrared fourier transform spectroscopy (FT-IR) revealed that new functional groups were produced in the HP55-ESF. The content of phenolic compounds, flavonoid (including decursin and decursinol angelate) content, and antioxidant activity increased by 5, 10, and 2 times in the HP55-ESF, respectively. The production of water soluble (61.5%) nano-sized (323 nm) particles was achieved in the HP55-ESF. Conclusions: Nano-composites were developed herein utilizing melt-extruded solid dispersion technology, including food grade polymer enhanced nano dispersion (< 500 nm) of active compounds from the radix of Angelica gigas Nakai with enhanced solubility and bioavailability. These nano-composites of the radix of Angelica gigas Nakai can be developed and marketed as products with high therapeutic performance.

A Study on the Fabrication of Oil Seal Appartus by use of the Magnetite Magnetic Fluid (마그네타이트 자성유체를 이용한 기름밀봉 장치 개발에 관한 연구)

  • 강신우;김영삼
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.4
    • /
    • pp.326-334
    • /
    • 1994
  • This paper describes the fabrication of the hydrophilic magnetic fluid with high viscosity and its application to oil seal apparatus used with the Nd-permanent magnet. The results are as follows. 1) The ultrafine magnetite particles under the size of $100\;{\AA}$ are first coated by the oleic acid ion and again adsorbed by the hydrophilic D. B. S. ion, and there by hydrophilic magnetic fluid with high viscosity could be made by dispersing them into the ethylene glycol. 2) In development of the oil seal apparatus using magnetic fluid and Nd-permanent magnet, the viscosity and magnetic susceptibility show high when the $Fe_{3}O_{4}$ content is over 50%(g/cc) in the fluid, so that such properties could improve highly the capability of oil seal. 3) The maximum of the resisting pressure of the oil seal using the ethylene glycol base magnetic fluid and the Nd-permanent magnet, is about $50\;g/\textrm{cm}^2$, under the condition of this experiment. Therefore the oil seal may not be suitable for the ship engine and the driving part of the automobile, and thus it needs a lot further complementary reserch. However, it is quite favourable for such an oil seal apparatus as speed reducer under the condition of atmospheric pressure.

  • PDF

Dispersion Characteristics of Oleic Acid Stabilized Water-based Magnetic Fluids by Peptiaztion Method (해교법으로 제조한 오레인산 수상자성유체의 분산특성)

  • Kim, Joung-Gon;Kim, Mahn;Oh, Jae-Hyun
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.1
    • /
    • pp.62-68
    • /
    • 1994
  • Water-based magnetic fluids containing synthesized ultrafine magnetite were successfully prepared with $C_{18}$ fatty acid such as oleic acid, linoleic acid and stearic acid. Oleic acid was needed the amount of $3.0{\times}10^{-2}$ mol per 20 g magnetite to stabilize the magnetite $d\;=\;113\;\AA$ particles. From pH 8.0 to pH 11.0, stable aqueous-based fluids could be obtained. The aggregated powder after drying the water-based magnetic fluid was also successfully re-dispersed in dilute $NH_{4}OH$ solution and in kerosene. The pH levels of the magnetic fluid using oleic acid system could be predicted by the pH values obtained by calculation of therrrodynamic data.

  • PDF

Investigation of the Concentration of PM2.1 & PM10 and Alveolar Deposition Ratio (미세먼지(PM10)와 초미세먼지(PM2.1)의 농도와 폐포 침착율 조사)

  • Kim, Seong Cheon
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.2
    • /
    • pp.126-133
    • /
    • 2019
  • Objectives: In this study, a nine-stage cascade impactor was used to collect dust, and the concentration of $PM_{2.1}$ & $PM_{10}$ and alveolar deposition ratio were investigated. Methods: This study was conducted at Kunsan National University from May to June 2016. A nine-stage Cascade Impactor was used to analyze the concentrations of fine and ultrafine dust and to estimate the alveolar deposition rate by particle size of atmospheric dust particles. The pore size of each stage of the collector used in this study gradually increased from F to 0, with the F-stage as the last stage. Results: The mass fraction of PM showed a bimodal distribution divided into $PM_{2.1}$ & $PM_{10}$ based on $2.1-3.1{\mu}m$. The average mass fraction of particulate matter in the range of $2.1-3.1{\mu}m$ was 44%, and the area occupied by $PM_{2.1}$ was similar. Therefore, the Gunsan area is considered to be a region where there are similar effects from anthropogenic and natural sources. Conclusion: Dust collecting efficiency increased with the stage of collecting fine dust, and the efficiency of collection was very low at the stage of collecting ultra-fine dust. The seasonal overall efficiency of the Cascade Impactor was 44% in spring and 37.4% in summer, and the average overall efficiency was 40.7%. The alveolar deposition rate of $PM_{2.1}/PM_{10}$ during the sampling period was estimated to be about 75% deposited in the alveoli.

Insights Into Emissions and Exposures From Use of Industrial-Scale Additive Manufacturing Machines

  • Stefaniak, A.B.;Johnson, A.R.;du Preez, S.;Hammond, D.R.;Wells, J.R.;Ham, J.E.;LeBouf, R.F.;Martin, S.B. Jr.;Duling, M.G.;Bowers, L.N.;Knepp, A.K.;de Beer, D.J.;du Plessis, J.L.
    • Safety and Health at Work
    • /
    • v.10 no.2
    • /
    • pp.229-236
    • /
    • 2019
  • Background: Emerging reports suggest the potential for adverse health effects from exposure to emissions from some additive manufacturing (AM) processes. There is a paucity of real-world data on emissions from AM machines in industrial workplaces and personal exposures among AM operators. Methods: Airborne particle and organic chemical emissions and personal exposures were characterized using real-time and time-integrated sampling techniques in four manufacturing facilities using industrial-scale material extrusion and material jetting AM processes. Results: Using a condensation nuclei counter, number-based particle emission rates (ERs) (number/min) from material extrusion AM machines ranged from $4.1{\times}10^{10}$ (Ultem filament) to $2.2{\times}10^{11}$ [acrylonitrile butadiene styrene and polycarbonate filaments). For these same machines, total volatile organic compound ERs (${\mu}g/min$) ranged from $1.9{\times}10^4$ (acrylonitrile butadiene styrene and polycarbonate) to $9.4{\times}10^4$ (Ultem). For the material jetting machines, the number-based particle ER was higher when the lid was open ($2.3{\times}10^{10}number/min$) than when the lid was closed ($1.5-5.5{\times}10^9number/min$); total volatile organic compound ERs were similar regardless of the lid position. Low levels of acetone, benzene, toluene, and m,p-xylene were common to both AM processes. Carbonyl compounds were detected; however, none were specifically attributed to the AM processes. Personal exposures to metals (aluminum and iron) and eight volatile organic compounds were all below National Institute for Occupational Safety and Health (NIOSH)-recommended exposure levels. Conclusion: Industrial-scale AM machines using thermoplastics and resins released particles and organic vapors into workplace air. More research is needed to understand factors influencing real-world industrial-scale AM process emissions and exposures.

Production and Mechanical Properties of Mg-Zn-Ce Amorphous Alloys by Dispersion of Ultrafine hcp-Mg Paticles (hcp-Mg 입자분산형 Mg-Zn-Ce계 비정질합금의 제조와 기계적 성질)

  • Kim, Seong-Gyu;Park, Heung-Il;Kim, U-Yeol;Jo, Seong-Myeong;Kim, Yeong-Hwan;Inoue, A.;Masumoto, T.
    • Korean Journal of Materials Research
    • /
    • v.4 no.8
    • /
    • pp.847-854
    • /
    • 1994
  • An amorphous single phase and coexistent amorphous and hcp-Mg phases in Mg-Zn-Ce system were found to form in the composition ranges of 20 to 40% Zn, 0 to 10% Ce and 5 to 20% Zn, 0 to 5% Ce, respectively. A $Mg_{85}Zn_{12}Ce_{3}$ amorphous alloy containing nanoscale hcp-Mg particles was found to form either by melt spinning or by heat treatment of melt -spun ribbon. The particle size of the hcp-Mg phase can be controlled in the range of 4 to 20 nm. The mixed phase alloy prepared thus has a good bending ductility and exhibits high ultimate tensile strength($\sigma_{B}$) ranging from 670 to 930 MPa and fracture elongation($\varepsilon_{f}$) of 5.2 to 2.0%. The highest specific strength($\sigma_{B}$/density =$\sigma_{s}$)$3.6 \times 10^5N \cdot m/kg$. It should be noted that the highest values of flB, US and ?1 are considerably higher than those (690MPa,$2.5 \times 10^5N \cdot m/kg$and 2.5%) for amorphous Mg-Zn-Ce alloys. The increase of the mechanical strengths by the formation of the mixed phase structure is presumably due to a dispersion hardening of the hcp supersaturated solution which has the hardness higher than that of the amorphous phase with the same composition.

  • PDF

Growth of ZnO Film by an Ultrasonic Pyrolysis (초음파 열분해법를 이용한 ZnO 성장)

  • Kim, Gil-Young;Jung, Yeon-Sik;Byun, Dong-Jin;Choi, Won-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.4
    • /
    • pp.245-250
    • /
    • 2005
  • ZnO was deposited on sapphire single crystal substrate by an ultrasonic pyrolysis of Zinc Acetate Dehydrate (ZAH) with carrying Ar gas. Through Thermogravimetry-Differential Scanning Calorimetry(TG-DSC), zinc acetate dihydrate was identified to be dissolved into ZnO above $380^{\circ}C$. ZnO deposited at $380-700^{\circ}C$ showed polycrystalline structures with ZnO (101) and ZnO (002) diffraction peaks like bulk ZnO in XRD, and from which c-axis strain ${\Sigma}Z=0.2\%$ and compressive biaxial stress$\sigma=-0.907\;GPa$ was obtained for the ZnO deposited $400^{\circ}C$. Scanning electron microscope revealed that microstructures of the ZnO were dependent on the deposition temperature. ZnO grown below temperature $600^{\circ}C$ were aggregate consisting of zinc acetate and ZnO particles shaped with nanoblades. On the other hand the grain of the ZnO deposited at $700^{\circ}C$ showed a distorted hexagonal shape and was composed of many ultrafine ZnO powers of 10-25 nm in size. The formation of these ulrafine nm scale ZnO powers was explained by the model of random nucleation mechanism. The optical property of the ZnO was analyzed by the photoluminescence (PL) measurement.