• Title/Summary/Keyword: Ultrafine fibers

Search Result 12, Processing Time 0.015 seconds

Polymer Nanofibers for Biomedical Engineering

  • Shin, Min-Kyoon;Kim, Seon-Jeong;Kim, In-Young;Kim, Sun-I.
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.3
    • /
    • pp.173-178
    • /
    • 2008
  • Recent advancements in the electrospinning method enable the production of ultrafine solid and continuous fibers with diameters ranging from a few nanometers to a few hundred nanometers with controlled surface and morphological features. A wide range of biopolymers can be electrospun into mats with a specific fiber arrangement and structural integrity. These features of nanofiber mats are morphologically similar to the extracellular matrix of natural tissues, which are characterized by a wide pore diameter distribution, a high porosity, effective mechanical properties, and specific biochemical properties. This has resulted in various kinds of applications for polymer nanofibers in the field of biomedicine and biotechnology. The current emphasis of research is on exploiting these properties and focusing on determining the appropriate conditions for electrospinning various biopolymers for biomedical applications, including scaffolds used in tissue engineering, wound dressing, drug delivery, artificial organs, and vascular grafts, and for protective shields in specialty fabrics. This paper reviews the research on biomedical applications of electrospun nanofibers.

Synthesis of High Affinity Anion Exchanger Using Ultrafine Fibrous PPmb Nonwoven Fabric by Co60 Irradiation Method (방사선 조사에 의한 초극세 폴리프로필렌 섬유부직포를 이용한 고효율 음이온교환체의 합성)

  • Choi, Kuk-Jong;Lee, Choul-Ho;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.509-515
    • /
    • 2008
  • The aminated polypropylene melt blown ion exchange fibers were synthesized with acrylic acid monomer onto polypropylene melt blown fibers by radiation-induced polymerization and subsequent amination. Degree of grafting was increased with increasing the acrylic acid monomer concentration and total dose. The highest degree of grafting was obtained 140% at a monomer concentration of 20 v/v% acrylic acid and total dose of 4 kGy. Optimum condition of Mohr's salt was 5.0 $\times10^{-3}$ M. Degree of amination was increased with increasing degree of grafting. Water content was about 1.5 times higher than that of trunk polymer. The maximum ion-exchange capacity was 7.3 meq/g which was 2$\sim$3 times higher than a commercial ion exchange fiber. The average pore size was decreased and BET surface area was increased in order of PPmb, PPmb- g- AAc and APPmb- g- AAc. The average pore size and BET surface area of synthesised fibers were $366.1\;{\AA},\;3.71m^2/g,\;143.3\;{\AA},\;4.94m^2/g,\;40.97\;{\AA},\;8.98m^2/g$, respectively.