• Title/Summary/Keyword: Ultra-wideband

Search Result 498, Processing Time 0.022 seconds

Performance of UWB Systems using Spatial Diversity in Multi-User Environments (다중사용자 환경에서 공간적인 다이버시티를 이용하는 초광대역 통신시스템의 성능 비교분석)

  • Baek, Sun-Young;An, Jin-Young;Lee, Sung-Sin;Kim, Sang-Choon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.321-324
    • /
    • 2007
  • In this paper, the performance improvement of ultra-wideband (UWB) communications system to achieve high-data-rate using spatial diversity provided by multiple receive antennas is investigated. We derive the expression for the received SINR after spatially combining through multiple receive antennas and evaluate the bit error rate (BER) performance by numerical simulation. We also compare the performance results in the case of 2PPM systems with the theoretical performance results in the case of 2PAM THMA UWB systems. The impacts of spatial diversity on the performance of 2PPM and 2PAM THMA UWB systems are analyzed. It is shown that the BER performance is improved as the number of receive antennas increases. Also, it is observed that in the presence of multiple user interference signals, the performance of 2PAM THMA UWB systems is considerably superior to that of 2PPM THMA UWB systems.

  • PDF

A Study of New UWB Channel Model in LOS Indoor Wireless Environment (가시거리 실내 무선 환경에서 새로운 UWB 채널 모델에 대한 연구)

  • Seo, Yu-Jung;Ahn, Je-Sung;Ha, Deock-Ho;Lee, Young-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.807-810
    • /
    • 2007
  • Recently, ultra-wideband (UWB) technology based on the transmission of short duration pulses has gained much interest for its application to wireless communications. UWB small scale channel modeling work, including statistical characterization and potential models, are discussed. The significance, in terms of performance, of the channel impulse response model chosen for the simulation of UWB communications systems is also evaluated. Three traditional models are found to be useful for modeling NLOS UWB channels, but not LOS channels. In this paper, a new model for LOS UWB channels is presented and shown to represent LOS channels much more accurately than the traditional models.

  • PDF

A Study on UWB Ranging and Positioning Technique using Common Clock (공통 클럭을 이용한 UWB 거리 인지 및 무선 측위 기술 연구)

  • Park, Jae-Wook;Choi, Yong-Sung;Lee, Soon-Woo;Lee, Won-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12A
    • /
    • pp.1128-1135
    • /
    • 2010
  • A wireless positioning system using ultra-wideband (UWB) for indoor wireless positioning uses ranging data in order to accurately estimate location. Commonly, ranging uses time of arrival (TOA), time difference of arrival (TDOA) based on arrival time. The most fundamental issue in the ranging for wireless positioning is to obtain clock synchronization among the sensor nodes and to correct an error caused by the relative clock offset from each node. In this paper, we propose ranging and positioning technique using common clock in order to solve both clock synchronization and clock offset problems. To verify the performance of proposed, we simulated ranging and positioning in channel model introduced by IEEE 802.15.4a Task Group and then results show that location estimation is unaffected by clock offset.

A Low Complex and Low Power Baseband IR-UWB Transceiver for Wireless Sensor Network (무선 센서 네트워크 응용을 위한 초광대역 임펄스 통신용 저복잡도, 저전력 베이스밴드 트랜시버)

  • Lee, Soon-Woo;Park, Young-Jin;Kang, Ji-Myung;Kim, Young-Hwa;Kim, Kwan-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.7
    • /
    • pp.38-44
    • /
    • 2008
  • In this paper, we introduce an low complexity and low power IR-UWB (impulse radio ultra wideband) baseband transceiver for wireless sensor network. The proposed baseband, implemented by TSMC 0.18um CMOS technology, has a simple structure in which a simplified packet structure and a digital synchronizer with 1-bit sampler to detect incoming pulses are used. Besides, clock gating method using gated clock cell as well as customized clock domain division can reduce the total power consumption drastically. As a result, the proposed baseband has about 23K digital gates with an internal memory of 2Kbytes and achieves about 1.8mW@1Mbps power consumption.

A Pulser System with Parallel Spark Gaps at High Repetition Rate

  • Lee, Byung-Joon;Nam, Jong-Woo;Rahaman, Hasibur;Nam, Sang-Hoon;Ahn, Jae-Woon;Jo, Seung-Whan;Kwon, Hae-Ok
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.305-312
    • /
    • 2011
  • A primary interest of this work is to develop an efficient and powerful repetitive pulser system for the application of ultra wide band generation. The important component of the pulser system is a small-sized coaxial type spark gap with planar electrodes filled with SF6 gas. A repetitive switching action by the coaxial spark gap generates two consecutive pulses in less than a microsecond with rise times of a few hundred picoseconds (ps). A set of several parameters for the repetitive switching of the spark gap is required to be optimized in charging and discharging systems of the pulser. The parameters in the charging system include a circuit scheme, circuit elements, the applied voltage and current ratings from power supplies. The parameters in the discharging system include the spark gap geometry, electrode gap distance, gas type, gas pressure and the load. The characteristics of the spark gap discharge, such as breakdown voltage, output current pulse and recovery rate are too dynamic to control by switching continuously at a high pulse repetition rate (PRR). This leads to a low charging efficiency of the spark gap system. The breakthrough of the low charging efficiency is achieved by a parallel operation of two spark gaps system. The operational behavior of the two spark gaps system is presented in this paper. The work has focused on improvement of the charging efficiency by scaling the PRR of each spark gap in the two spark gaps system.

A Study on Efficient UWB Positioning Error Compensation Technique (효율적인 UWB 무선 측위 오차 보상 기법에 관한 연구)

  • Park, Jae-Wook;Bae, Seung-Chun;Lee, Soon-Woo;Kang, Ji-Myung;Lee, Won-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10A
    • /
    • pp.727-735
    • /
    • 2009
  • To alleviate positioning error using wireless ultra-wideband (UWB) is primary concern, and it has been studied how to reduce the positioning error effectively. Thanks to many repeated transmissions of UWB signals, we can have a variety of selections to point out the most precise positioning result. Towards this, scanning method has been preferred to be used due to its simplicity. This exhaustive method firstly fixes the candidate position, and calculates the sum of distances from observed positions. However, it has tremendous number of computations, and the complexity is more serious if the size of two-dimensional range is the larger. To mitigate the large number of computations, this paper proposes the technique employing genetic algorithm and block windowing. To exploit its superiority, simulations will be conducted to show the reduction of complexity, and the efficiency on positioning capability.

Performance of UWB Systems using Spatial Diversity in Multi-User Environments (다중사용자 환경에서 공간적인 다이버시티를 이용하는 초광대역 통신시스템의 성능 비교분석)

  • Baek, Sun-Young;An, Jin-Young;Lee, Sung-Sin;Kim, Sang-Choon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2121-2126
    • /
    • 2007
  • In this paper, the performance improvement of ultra-wideband(UWB) communications system to achieve high-data-rate using spatial diversity provided by multiple receive antennas is investigated. We derive the expression for the received SINR after spatially combining through multiple receive antennas and evaluate the bit error rate(BER) performance by numerical simulation. We also compare the performance results in the case of 2PPM systems with the theoretical performance results in the case of 2PAM THMA UWB systems. The impacts of spatial diversity on the performance of 2PPM and 2PAM THMA UWB systems are analyzed. It is shown that the BER performance is improved as the number of receive antennas increases. Also, it is observed that in the presence of multiple user interference signals, the performance of 2PAM THMA UWB systems is considerably superior to that of 2PPM THMA UWB systems.

Frequency Offset Estimation for IR-UWB Packet-Based Ranging System (IR-UWB 패킷 기반의 Ranging 시스템을 위한 주파수 옵셋 추정기)

  • Oh, Mi-Kyung;Kim, Jae-Young;Lee, Hyung-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12C
    • /
    • pp.1184-1191
    • /
    • 2009
  • We aim at frequency offset estimation for IEEE 802.15.4a ranging systems, where an impulse-radio ultra-wideband (IR-UWB) signal is exploited, By incorporating the property of the ternary code in the preamble, we derive a simplified maximum-likelihood (ML) estimation of the frequency offset. In addition, a closed form estimator for implementation is investigated. Simulation results and theoretical analysis verify our estimators in IEEE 802.15.4a IR-UWB packet-based ranging systems.

Highly Miniaturized and Performed UWB Bandpass Filter Embedded into PCB with SrTiO3 Composite Layer

  • Cheon, Seong-Jong;Park, Jun-Hwan;Park, Jae-Yeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.582-588
    • /
    • 2012
  • In this paper, a highly miniaturized and performed UWB bandpass filter has been newly designed and implemented by embedding all the passive elements into a multi-layered PCB substrate with high dielectric $SrTiO_3$ composite film for 3.1 - 4.75 GHz compact UWB system applications. The high dielectric composite film was utilized to increase the capacitance densities and quality factors of capacitors embedded into the PCB. In order to reduce the size of the filter and avoid parasitic EM coupling between the embedded filter circuit elements, it was designed by using a $3^{rd}$ order Chebyshev circuit topology and a capacitive coupled transformation technology. Independent transmission zeros were also applied for improving the attenuation of the filter at the desired stopbands. The measured insertion and return losses in the passband were better than 1.68 and 12 dB, with a minimum value of 0.78 dB. The transmission zeros of the measured response were occurred at 2.2 and 5.15 GHz resulting in excellent suppressions of 31 and 20 dB at WLAN bands of 2.4 and 5.15 GHz, respectively. The size of the fabricated bandpass filter was $2.9{\times}2.8{\times}0.55(H)mm^3$.

Compact Band-notched UWB Antenna Design Based On Transmission Line Model

  • Zhu, Xiaoming;Yang, Xiaodong;Chen, Peng
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.338-343
    • /
    • 2015
  • In order to avoid the interference from existing narrowband communication systems, this paper proposes a compact band-notched UWB (ultra wideband) antenna with size of $12mm{\times}22mm{\times}1.6mm$. Transmission line model is applied to analyzing wide impedance matching characteristic of the modified base antenna, which has a gradual stepped impedance feeder structure. The proposed antenna realizes dual band-notched function by combining two biased T-shaped parasitic elements on the rear side with a window aperture on the radiation patch. The simulation current distributions of the antenna reflect resonant suppression validity of the two methods. In addition, the measured radiation characteristics demonstrate the proposed antenna prevents signal interference from WLAN (5.15-5.825GHz) and WiMAX (3.4-3.69GHz) effectively, and the measured patterns show the antenna omnidirectional radiation in working frequencies.