• 제목/요약/키워드: Ultra-small

Search Result 518, Processing Time 0.024 seconds

Impact of Group Delay in RF BPF on Impulse Radio Systems (임펄스 라디오 시스템에서 RF 대역 통과 필터의 군지연 영향 분석)

  • Myoung Seong-Sik;Kwon Bong-Su;Kim Young-Hwan;Yook Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.4 s.95
    • /
    • pp.380-388
    • /
    • 2005
  • This paper presents analysis results of the effects of RF filter characteristics on the system performance of impulse radio. The impulse radio system transmits modulated pulses having very short time duration and information can be extracted in receiver side based on cross-correlation between received and transmitted pulses. Accordingly, the pulse distortion due to in-band group delay variation can cause serious system performance degradation. In general, RF bandpass filters inevitably cause group delay difference to the signal passing through the filter which is proportional to its skirt characteristic due to its resonance phenomenon. For time as well as frequency domain analysis, small signal scattering parameter $S_{21}$ and its Fourier transform are used to characterize output pulse waveform under the condition that the input and output ports are matched. The output pulse waveform of the filter is predicted based on convolution integral between input pulse and filter transfer function, and resulting BER performances in the BPM and PPM based impulse radio system are calculated.

Process Capability Optimization of Ball Bonding Using Response Surface Analysis in Light Emitting Diode(LED) Wire Bonding (반응 표면 분석법을 이용한 Light Emitting Diode(LED) wire bonding 용 Ball Bonding 공정 최적화에 관한 연구)

  • Kim, Byung-Chan;Ha, Seok-Jae;Yang, Ji-Kyung;Lee, In-Cheol;Kang, Dong-Seong;Han, Bong-Seok;Han, Yu-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.175-182
    • /
    • 2017
  • In light emitting diode (LED) chip packaging, wire bonding is an important process that connects the LED chip on the lead frame pad with the Au wire and enables electrical operation for the next process. The wire bonding process is divided by two types: thermo compression bonding and ultrasonic bonding. Generally, the wire bonding process consists of three steps: 1st ball bonding that bonds the shape of the ball on the LED chip electrode, looping process that hangs the wire toward another connecting part with a loop shape, and 2nd stitch bonding that forms and bonds to another electrode. This study analyzed the factors affecting the LED die bonding processes to optimize the process capability that bonds a small Zener diode chip on the PLCC (plastic-leaded chip-carrier) LED package frame, and then applied response surface analysis. The design of experiment (DOE) was established considering the five factors, three levels, and four responses by analyzing the factors. As a result, the optimal conditions that meet all the response targets can be derived.

Application of Oryza sativa (Rice) Bran Oil as an Anti-pollution Cosmetic Material (쌀겨오일의 안티폴루션 화장품 소재로써의 응용)

  • Kang, Hae-Ran;Jung, So Young;Heo, Hyojin;Cha, Byungsun;Brito, Sofia;Lee, So Min;Yeo, Hye Lim;Yoo, Kyung Wan;Kwak, Jun Soo;Kwak, Byeong-Mun;Lee, Mi-Gi;Bin, Bum-Ho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.3
    • /
    • pp.237-245
    • /
    • 2021
  • Particulate matter and ultra-particle matters generally refer to very small floating dust, such as 1/6 to 1/7 and 1/20 to 1/30, respectively, compared to the thickness of human hair, and contain various types of heavy metal ions. In addition to breathing, particle matters (PM) that flows in through the gaps in the pores of the skin can induce health problems in the body's tissues and skin, so it must be removed by blocking the inflow or by washing. Through this study, we confirmed the possibility that heavy metal ions can be adsorbed and removed by using Oryza sativa (Rice) bran oil (OSBO). In addition, the cell viability is much higher than that of grain-derived components through cytotoxicity experiments, and the cytoprotective effect of an external stimulus source can be expected. It was confirmed that the expression amount of COL1A1 mRNA increased, and accordingly, it was believed that wrinkles that might be caused by moisture lost by heavy metal ions in fine dust could be alleviated. Based on the results of these experiments, we tried to present a cosmetics containing OSBO, which is a wash-off formulation, in order to finally remove heavy metals.

A Study on Network Construction Strategies for Long-Haul Low-Cost Carrier Operations

  • Choi, Doo-Won;Han, Neung-Ho
    • Journal of Korea Trade
    • /
    • v.25 no.8
    • /
    • pp.57-74
    • /
    • 2021
  • Purpose - This study aims to analyze the characteristics of network construction by Norwegian Air and AirAsia X, which are recognized as leading airlines in the long-haul LCC market. Based on this analysis, this study intends to provide implications for networking strategies for Korean LCCs that seek to enter the long-haul market when the aviation market stabilizes again upon the end of the COVID-19 pandemic. Design/methodology - To conduct the network analysis on long-haul low-cost airlines, the Official Airline Guide (OAG) Schedule Analyzer was used to extract long-haul data of Norwegian Air and AirAsia X. To analyze the trend of the long-haul route network, we obtained the data from 3 separate years between 2011 and 2019. The network was analyzed using UCINET 6.0 in order to examine the network structure of long-haul low-cost airlines and the growth trend of each stage. Findings - Analyzing the network of long-haul routes by visualizing the network structure of low-cost carriers showed the following results. In its early years, Norwegian Air's long-haul route network, centering on regional airports in Spain and Sweden, connected European regions, the Middle East, and Africa. As time passed, however, the network expanded and became steadily strong as the airline connected airports in other European countries to North America and Asia. In addition, in 2011, AirAsia X showed links to parts of Europe, such as London and Paris, the Middle East and India, and Australia and Northeast Asia, centering on the Kuala Lumpur Airport. Although the routes in Europe were suspended, the network continued to expand while concentrating on routes of less than approximately 7,000 km. It was found that instead of giving up on ultra-long-haul routes such as Europe, the network was further expanded in Northeast Asia, such as the routes in Korea and Japan centering on China. Originality/value - Until the COVID-19 pandemic broke out, Norwegian Air actively expanded long-haul routes, resulting in the number of long-haul routes quintupling since 2011. The unfortunate circumstance, wherein the world aviation market was rendered stagnant due to the outbreak of COVID-19, hit Norwegian Air harder than any other low-cost carriers. However, in the case of AirAsia X, it was found that it did not suffer as much damage as Norwegian Air because it initially withdrew from unprofitable routes over 7,000 km and grew by gradually increasing profitable destinations over shorter distances. When the COVID-19 pandemic ends and the aviation market stabilizes, low-cost carriers around the world, including Korea, that enter the long-haul route market will need to employ strategies to analyze the marketability of potential routes and to launch the routes that yield the highest profits without being bound by distance. For stable growth, it is necessary to take a conservative stance; first, by reviewing the business feasibility of the operating a small number of highly profitable routes, and second, by gradually expanding these routes.

A Study on the Design Plan of UX for the Smart Healthcare for the Aged Society - Focused on IOT Technology (고령사회 스마트 헬스케어를 위한 UX 디자인방안 - 사물인터넷 기술을 중심으로)

  • Kim, Seung-Min
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.11
    • /
    • pp.462-474
    • /
    • 2018
  • The development of bio-sensing technology made it easy to collect various biometric information that was only available in large medical devices. The miniaturization of sensors makes it simple to carry out various health checkups that It did in person to the hospital by improving the portability of diagnostic devices. It is able to combine sensors into portable devices such as Smartphones, apply advanced Internet of Things (IOT) technology, and create new form factors for medical devices such as ultra-small modules that can be inserted or attached to their bodies. The results can be checked immediately through portable information devices such as smart phones. Although commercialization is still slow in Korea, new technologies are being applied in various ways in countries such as the United States that have granted remote medical services. Medical demand, supply and cost in South Korea are growing ahead of a super-aged society. Under these circumstances, attention is focusing on whether smart healthcare, a new concept, can complement the existing medical system. This study identifies the technology trends associated with smart health care and categorizes various healthcare products in the UX design aspects. In addition, the UX design approach and guidelines for applying smart healthcare technologies to the elderly, the intended users, are presented. This research will provide a reference to a new social issue, the UX-design approach to solving the problems of the aged society.

Development of Temperature Compensated Micro Cone by using Fiber Optic Sensor (광섬유를 이용한 온도 보상형 마이크로콘의 개발)

  • Kim, Raehyun;Lee, Woojin;Yoon, Hyung-Koo;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4C
    • /
    • pp.163-174
    • /
    • 2009
  • Mechanical device using the load cell or strain gage sensor can be influenced by tempearute changes because temperature change can cause a shift in the load cell or straing gage output at zero loading. In this paper, micro cone penetrometers with 1~7mm in diameter, are developed by using an optical fiber sensor (FBG: Fiber Bragg Grating) to compensate the continous temperature change during cone penetration test. Note the temperature compensated method using optical fiber sensor which has hair-size in diameter, and is not affected by environmental conditions because the measured data is the wavelength shifting of the light instead of the intensity of the electric voltage. Temperature effect test shows that the output voltage of strain gage changes and increases with an increase in the temperature. A developed FBG cone penetrometer, however, achieves excellent temperature compensation during penetration, and produces continuous change of underground temperature. In addition, the temperature compensated FBG cone shows the excellent sensitivity and detects the interface of the layered soils with higher resolution. This study demonstrates that the fiber optic sensor renders the possibility of the ultra small size cone and the new fiber optic cone may produce more reliable temperature compensated tip resistance.

Corrosion Behavior and Ultrasonic Velocity in RC Beams with Various Cover Depth (다양한 피복두께를 가진 RC 보의 부식 거동 및 초음파 속도)

  • Jin-Won Nam;Hyun-Min Yang;Seung-Jun Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.184-191
    • /
    • 2023
  • With increasing corrosion in RC (Reinforced Concrete) structures, cracks occurred due to corrosion products and bearing load resistance decreased. In this study, corrosion was induced through an accelerated corrosion test (ICM: Impressed Current Method) with 140 hours of duration, and changes in USV (Ultra-Sonic Velocity), flexural failure load, and corrosion weight were evaluated before and after corrosion test. Three levels of cover depth (20 mm, 30 mm, and 40 mm) were considered, and the initial cracking period increased and the rust around steel decreased with increasing cover depth. In addition, the USV linearly decreased with decreasing cover depth and increasing amount of corrosion. In the flexural loading test, the bending capacity decreased by more than 10% due to corrosion, but a clear correlation could not be obtained since the corrosion ratio was small, so that the effect of slip was greater than that of reduced cross-sectional area of steel due to corrosion. As cover depth increased, the produced corrosion amount and USV changed with a clear linear relationship, and the cracking period due to corrosion could be estimated by the gradient of the measured corrosion current.

Study on Structural Changes and Electromagnetic Interference Shielding Properties of Ti-based MXene Materials by Heat Treatment (열처리에 의한 Ti 기반 MXene 소재의 구조 변화와 전자파 간섭 차폐 특성에 관한 연구)

  • Han Xue;Ji Soo Kyoung;Yun Sung Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.111-118
    • /
    • 2023
  • MXene, a two-dimensional transition metal carbide or nitride, has recently attracted much attention as a lightweight and flexible electromagnetic shielding material due to its high electrical conductivity, good mechanical strength and thermal stability. In particular, the Ti-based MXene, Ti3C2Tx and Ti2CTx are reported to have the best electrical conductivity and electromagnetic shielding properties in the vast MXene family. Therefore, in this study, Ti3C2Tx and Ti2CTx films were prepared by vacuum filtration using Ti3C2Tx and Ti2CTx dispersions synthesized by interlayer metal etching and centrifugation of Ti3AlC2 and Ti2AlC. The electrical conductivity and electromagnetic shielding efficiency of the films were measured after heat treatment at high temperature. Then, X-ray diffraction and photoelectron spectroscopy were performed to analyze the structural changes of Ti3C2Tx and Ti2CTx films after heat treatment and their effects on electromagnetic shielding. Based on the results of this study, we propose an optimal structure for an ultra-thin, lightweight, and high performance MXene-based electromagnetic shielding film for future applications in small and wearable electronics.

Safety assessments of recombinant DTaP vaccines developed in South Korea

  • Gi-Sub Choi;Kyu-Ri Kang;Seung-Bum Kim;Joon-Hwan Ji;Gyu-Won Cho;Hyun-Mi Kang;Jin-Han Kang
    • Clinical and Experimental Vaccine Research
    • /
    • v.13 no.2
    • /
    • pp.155-165
    • /
    • 2024
  • Purpose: Pertussis bacteria have many pathogenic and virulent antigens and severe adverse reactions have occurred when using inactivated whole-cell pertussis vaccines. Therefore, inactivated acellular pertussis (aP) vaccines and genetically detoxified recombinant pertussis (rP) vaccines are being developed. The aim of this study was to assess the safety profile of a novel rP vaccine under development in comparison to commercial diphtheria-tetanus-acellular pertussis (DTaP) vaccines. Materials and Methods: The two positive control DTaP vaccines (two- and tri-components aP vaccines) and two experimental recombinant DTaP (rDTaP) vaccine (two- and tri-components aP vaccines adsorbed to either aluminum hydroxide or purified oat beta-glucan) were used. Temperature histamine sensitization test (HIST), indirect Chinese hamster ovary (CHO) cell cluster assay, mouse-weight-gain (MWG) test, leukocytosis promoting (LP) test, and intramuscular inflammatory cytokine assay of the injection site performed for safety assessments. Results: HIST results showed absence of residual pertussis toxin (PTx) in both control and experimental DTaP vaccine groups, whereas in groups immunized with tri-components vaccines, the experimental tri-components rDTaP absorbed to alum showed an ultra-small amount of 0.0066 IU/mL. CHO cell clustering was observed from 4 IU/mL in all groups. LP tests showed that neutrophils and lymphocytes were in the normal range in all groups immunized with the two components vaccine. However, in the tri-components control DTaP vaccine group, as well as two- and tri-components rDTaP with beta-glucan group, a higher monocyte count was observed 3 days after vaccination, although less than 2 times the normal range. In the MWG test, both groups showed changes less than 20% in body temperature and body weight before the after the final immunizations. Inflammatory cytokines within the muscle at the injection site on day 3 after intramuscular injection revealed no significant response in all groups. Conclusion: There were no findings associated with residual PTx, and no significant differences in both local and systemic adverse reactions in the novel rDTaP vaccine compared to existing available DTaP vaccines. The results suggest that the novel rDTaP vaccine is safe.

Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving (자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가)

  • Cho, Moon Ki;Bae, Kyoung Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.191-207
    • /
    • 2021
  • Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 106/㎢ In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it's difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.