• Title/Summary/Keyword: Ultra-high-speed

Search Result 425, Processing Time 0.031 seconds

Bead Formation and Wire Temperature Distribution during Ultra-high-speed GTA Welding Using Pulse-heated Hot-wire

  • Shinozaki, K.;Yamamoto, M.;Mitsuhata, Koichi;Nagashima, Toshiharu;Kanazawa, T.;Arashin, H.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.226-234
    • /
    • 2009
  • The purpose of this study was to investigate the melting phenomenon of filler wire in detail and to obtain the precise temperature distribution of filler wire during GTA welding under the ultra-high welding speed condition in order to develop the ultra-high-speed GTA welding process with the pulse-heated hot-wire system by using three kinds of materials. The melting phenomenon of filler wire was observed using a high-speed camera and the temperature distribution of filler wire was measured using a radiation thermometer. From the above result, the adequate welding conditions of each material to make the GTA welding process with the ultra-high welding speed could be obtained. The ultra-high-speed GTA welding process needed the adequate wire current in order to obtain the adequate temperature distribution and the adequate melting position of filler wire. Moreover, the temperature distributions of three kinds of filler wire could be estimated by using the proposed simple estimation method.

  • PDF

Analysis of Design Parameters for Earthwork/Bridge Transition Structure for Ultra-High Speed Running (초고속 주행시 교량/토공 접속부 보강방안의 설계변수 분석)

  • Lee, Il-Wha;Lee, Sung-Jin;Lee, Su-Hyung;Lee, Kang-Myung
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.2
    • /
    • pp.117-126
    • /
    • 2015
  • The development of railway roadbed for 600km/h train speed level is very difficult because unpredictable static and dynamic interaction occurs between the ultra-high speed train and the infrastructure. Especially, an earthwork-bridge transition zone is a section in which influential factors react, such as bearing capacity, compression, settlement, drainage, and track irregularity; these interactions can include complicated dynamic interaction. Therefore, if static and dynamic stability are secured in transition zones, it is possible to develop roadbeds for ultra-high speed railways. In the present paper, design parameters for transition reinforcement applied to present railway design criteria are analytically examined for ultra-high speed usage on a preferential basis. Design parameters are the presence of reinforcing materials, geometric shape, stiffness of materials, and so on. Analysis is focused on the deformation response of the track and running stability at ultra-high speed.

Technical comparison between superconductive RSFQ logic circuits and silicon CMOS digital logics (초전도 디지털 RSFQ 논리회로와 실리콘 CMOS 회로와의 기술적 비교)

  • Cho, W.;Moon, G.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.1
    • /
    • pp.26-28
    • /
    • 2006
  • The development technique of digital logic using CMOS device is close reached several limitations These make technical needs that are ultra high speed superconductive systems based on CMOS silicon digital computing technique. Comparing digital logic based on silicon CMOS, the computing technique based on ultra high speed superconductive systems has many advantages which are ultra low power consumption, ultra high operation speed. etc. It is estimated that features like these increasingly improve the possibility of ultra low power and ultra superconductive systems. In this paper digital logics of current CMOS technique and RSFQ superconductive technique are compared with and analyzed.

Numerical Analysis on the High Speed Precision Press for Ultra-thin Sheet Metal Forming (초박판 성형용 고속 정밀프레스에 대한 해석적 연구)

  • Kang, J.J.;Kim, J.E.;Hong, S.K.;Kim, J.D.;Heo, Y.M.;Cho, C.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.643-648
    • /
    • 2008
  • Ultra-thin sheet metal forming techniques are required in precision forming of miniaturized and integrated products. In order to manufacture a good quality and low cost ultra-thin sheet metal products, a highly precise high-speed press is needed. The precision of a press is related with its vibration characteristics during pressing operation. This study evaluated the vibration characteristics of a proposed press design using computer simulation. The analysis compares the static deformation characteristics of the slide and the slide motion for the metal forming of an ultra-thin sheet of thickness less than 0.1mm. Further, in order to minimize the vibrations during high speed pressing operation, revolution balances of the eccentric shaft and the balance weight device is also considered. Finally, modal analysis is used to characterize the natural frequency of vibration of the press.

Ultra High-speed 3-dimensional Profilometry Using a Laser Grating Projection System

  • Park, Yoon-Chang;Ahn, Seong-Joon;Kang, Moon-Ho;Kwon, Young-Chul;Ahn, Seung-Joon
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.464-467
    • /
    • 2009
  • The grating projection method with phase-shifting technique is very useful in measuring the 3-dimensional (3D) shape with high accuracy and speed. In this work, we have developed an ultra high-speed digital laser grating projection system using a high-power laser diode and a highsensitivity CMOS camera. With our system, the optical measurement required to find out the profile of a 3D object could be carried out within 2.6 ms, which is a significant ($\sim$10 times) improvement compared with those of the previous studies.

Development of the ultra-high speed electric injection molding machine using the energy regeneration method (에너지 회생 기법을 사용한 초고속 전동 사출성형기 개발)

  • Yu, Hyeon-Jae;Yoo, Sung-Chul;Hyun, Chang-Hoon;Park, Kyoung-Ho
    • Design & Manufacturing
    • /
    • v.10 no.2
    • /
    • pp.1-5
    • /
    • 2016
  • High-speed and high-torque performance is required in the ultra-high speed electric injection molding machine field. To implement this performance, the big-size inverter is needed and the corresponding converter should be used. In this case, the whole cost for configuring the system will be increased. In this paper, we introduce a method which is able to reduce the energy and the cost for configuring the system using the energy regeneration. The energy regeneration method is based on reusing the regeneration power generated at the electric motor during decelerating the injection motion. In this paper, we demonstrate the effectiveness of the method by using the ultra-high speed injection motion.

A Study on the Performance Evaluation of End Mill Tool Fabricated by Ultra-Fine WC (초미립 WC 소재 엔드밀 공구의 성능 평가에 관한 연구)

  • Kim, Do-Hyoung;Woo, Yong-Won;Lee, Hyun-Ho;Kim, Jeong-Suk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.1-8
    • /
    • 2007
  • The ultra-fine tungsten carbide(WC) powders have been actively used in the cemented carbides industry, because they have excellent mechanical properties such as high hardness, strength, and toughness. In this study, ultra-fine WC-Co alloys powders have been fabricated by thermochemical and thermomechanical process such as spray conversion process or high energy ball milling. The non-coated end-mill which is made of ultra-fine tungsten carbide is investigated by measuring cutting force, tool wear, tool life, and surface roughness profile according to cutting length. The machining test was conducted with high hardened workpiece and their performances are investigated in high speed cutting conditions. Also, the relationship between the machining characteristics and the Co contents are investigated under various high speed cutting conditions.

Study of quality characteristics in gluten-free rice batter according to ultra-high speed conditions

  • Ku, Su-Kyung;Park, Jong-Dae;Sung, Jung-Min;Choi, Yun-Sang
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.535-544
    • /
    • 2021
  • When baking, the proper blending or mixing of materials will affect the quality of the product. The mixing strength is important when establishing the optimal conditions for batter, and control of the mixing condition is accordingly an important factor. This study investigated the effects of the mixing speed and time on the quality characteristics of a gluten-free type of rice batter. The batter samples manufactured for this purpose are as follows: control (+) (wheat flour), control (-) (rice flour), T1 (1,800 rpm, 1 min), T2 (1,800 rpm, 2 min), T3 (1,800 rpm, 3 min), T4 (3,600 rpm, 1 min), T5 (3,600 rpm, 2 min), T6 (3,600 rpm, 3 min). In this study, rice flour was used in the T1 to T6 samples. The pH of the batter tended to be higher when the mixing speed was slower and the time was shorter depending on the ultra-high mixing conditions. The moisture content of T3 was highest, and there was no difference according to the ultra-high speed conditions. The specific volumes of the ultra-high mixing treatments were higher than those of the control samples. The relationship between the specific volume, hardness and springiness of rice bread according to the mixing speed and time was weak. Therefore, it is considered that the application of ultra-high speeds when manufacturing gluten-free batter can have a positive effect on improving the production efficiency by reducing the processing time.