• 제목/요약/키워드: Ultra-high dose rate

검색결과 5건 처리시간 0.022초

Initial Dosimetry of a Prototype Ultra-High Dose Rate Electron-Beam Irradiator for FLASH RT Preclinical Studies

  • Hyun Kim;Heuijin Lim;Sang Koo Kang;Sang Jin Lee;Tae Woo Kang;Seung Wook Kim;Wung-Hoa Park;Manwoo Lee;Kyoung Won Jang;Dong Hyeok Jeong
    • 한국의학물리학회지:의학물리
    • /
    • 제34권3호
    • /
    • pp.33-39
    • /
    • 2023
  • Purpose: FLASH radiotherapy (RT) using ultra-high dose rate (>40 Gy/s) radiation is being studied worldwide. However, experimental studies such as preclinical studies using small animals are difficult to perform due to the limited availability of irradiation devices and methods for generating a FLASH beam. In this paper, we report the initial dosimetry results of a prototype electron linear accelerator (LINAC)-based irradiation system to perform ultra-high dose rate (UHDR) preclinical experiments. Methods: The present study used the prototype electron LINAC developed by the Research Center of Dongnam Institute of Radiological and Medical Sciences (DIRAMS) in Korea. We investigated the beam current dependence of the depth dose to determine the optimal beam current for preclinical experiments. The dose rate in the UHDR region was measured by film dosimetry. Results: Depth dose measurements showed that the optimal beam current for preclinical experiments was approximately 33 mA, corresponding to a mean energy of 4.4 MeV. Additionally, the average dose rates of 80.4 Gy/s and 162.0 Gy/s at a source-to-phantom surface distance of 30 cm were obtained at pulse repetition frequencies of 100 Hz and 200 Hz, respectively. The dose per pulse and instantaneous dose rate were estimated to be approximately 0.80 Gy and 3.8×105 Gy/s, respectively. Conclusions: Film dosimetry verified the appropriate dose rates to perform FLASH RT preclinical studies using the developed electron-beam irradiator. However, further research on the development of innovative beam monitoring systems and stabilization of the accelerator beam is required.

Real-time monitoring of ultra-high dose rate electron beams using bremsstrahlung photons

  • Hyun Kim;Dong Hyeok Jeong;Sang Koo Kang;Manwoo Lee;Heuijin Lim;Sang Jin Lee;Kyoung Won Jang
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3417-3422
    • /
    • 2023
  • Recently, as the clinically positive biological effects of ultra-high dose rate (UHDR) radiation beams have been revealed, interest in flash radiation therapy has increased. Generally, FLASH preclinical experiments are performed using UHDR electron beams generated by linear accelerators. Real-time monitoring of UHDR beams is required to deliver the correct dose to a sample. However, it is difficult to use typical transmission-type ionization chambers for primary beam monitoring because there is no suitable electrometer capable of reading high pulsed currents, and collection efficiency is drastically reduced in pulsed radiation beams with ultra-high doses. In this study, a monitoring method using bremsstrahlung photons generated by irradiation devices and a water phantom was proposed. Charges collected in an ionization chamber located at the back of a water phantom were analyzed using the bremsstrahlung tail on electron depth dose curves obtained using radiochromic films. The dose conversion factor for converting a monitored charge into a delivered dose was determined analytically for the Advanced Markus® chamber and compared with experimentally determined values. It is anticipated that the method proposed in this study can be useful for monitoring sample doses in UHDR electron beam irradiation.

Si(100)에 low energy로 Ultra high dose 이온 주입 시 Dose rate 변화에 따른 Sheet Resistance

  • 김형인;박재형;전유승;강석태
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.242-242
    • /
    • 2010
  • Si(100) 표면에 이온을 일정한 에너지로 dose량을 동일하게 유지하고, dose rate만을 변화시켜가며 주입한 후에 depth profile과 damage, 그리고 sheet resistance를 조사하였다. 일정한 에너지로 이온을 주입하여도 dose rate의 변화에 따라서 depth profile에 변화를 보이는 것을 확인할 수 있었고 sheet resistance역시 dose rate변화에 비례하여 변화하는 것을 확인할 수 있었다. 본 연구는 Crystal-TRIM program으로 computer simulation 하여 damage profile의 결과를 통해 dose rate가 클수록 시료 표면 근처에 잔류 damage의 양이 높게 나타나는 것을 알 수 있었고 그 잔류 damage의 표면근방 분포가 sheet resistance에 직접적인 영향을 미친다는 것을 확인할 수 있었다.

  • PDF

3D 프린팅 플라스틱 섬광체의 양성자 빔에 대한 적용 (Preliminary Test of 3D Printed Plastic Scintillators for Proton Beam)

  • 김성환
    • 한국방사선학회논문지
    • /
    • 제16권6호
    • /
    • pp.681-686
    • /
    • 2022
  • 본 연구에서 상용 아크릴 기반 레진에 PPO 유기섬광체 및 MMA를 각각 1 wt% 및 5 wt% 첨가하여 3D 프린팅이 가능한 섬광체 레진을 제작하였다. 개발된 섬광체 레진을 사용하여 상용 3D DLP로 간편하면서도 저렴하게 3D 모양의 플라스틱 섬광체 방사선 센서를 성공적으로 제작할 수 있었다. 제작된 센서는 45 MeV 양성자 빔의 빔 전류 1 ~ 10 nA 범위에서 R제곱값이 0.998로 우수한 선량 대 출력 직선성을 보였다. 개발된 3D 플라스틱 섬광체는 광출력이 낮아서 저선량율 감마선이나 X선 선량 측정에 활용하기에는 제한이 있지만, 조직등가물질로서 인체흡수선량을 직접 측정할 수 있기 때문에 양성자 빔, 초고선량율 빔 등 고에너지 또는 고선량율 방사선 선량 측정에 유용하게 활용될 수 있음을 확인하였다.

Electron beam scattering device for FLASH preclinical studies with 6-MeV LINAC

  • Jeong, Dong Hyeok;Lee, Manwoo;Lim, Heuijin;Kang, Sang Koo;Lee, Sang Jin;Kim, Hee Chang;Lee, Kyohyun;Kim, Seung Heon;Lee, Dong Eun;Jang, Kyoung Won
    • Nuclear Engineering and Technology
    • /
    • 제53권4호
    • /
    • pp.1289-1296
    • /
    • 2021
  • In this study, an electron-scattering device was fabricated to practically use the ultra-high dose rate electron beams for the FLASH preclinical research in Dongnam Institute of Radiological and Medical Sciences. The Dongnam Institute of Radiological and Medical Sciences has been involved in the investigation of linear accelerators for preclinical research and has recently implemented FLASH electron beams. To determine the geometry of the scattering device for the FLASH preclinical research with a 6-MeV linear accelerator, the Monte Carlo N-particle transport code was exploited. By employing the fabricated scattering device, the off-axis and depth dose distributions were measured with radiochromic films. The generated mean energy of electron beams via the scattering device was 4.3 MeV, and the symmetry and flatness of the off-axis dose distribution were 0.11% and 2.33%, respectively. Finally, the doses per pulse were obtained as a function of the source to surface distance (SSD); the measured dose per pulse varied from 4.0 to 0.2 Gy/pulse at an SSD range of 20-90 cm. At an SSD of 30 cm with a 100-Hz repetition rate, the dose rate was 180 Gy/s, which is sufficient for the preclinical FLASH studies.