• 제목/요약/키워드: Ultra-fine Particle

검색결과 107건 처리시간 0.021초

Ultra-fine Grinding Mechanism of Pharmaceutical Additive by Stirred Ball Mill - Consideration of particle size distribution on ground nano-particle

  • Park, Woo-Sik;Choi, Hee-Kyu
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.234.2-234.2
    • /
    • 2003
  • Recently, the need for ultra-fine particles, especially nano-sized particles has increased in the fields preparing raw powders such as pharmaceutical additive and high value added products in the Nano-Technology processes. Therefore, the research in ultra-fine grinding is very important, especially, in nanometer grinding. In the previous paper, a series of wet grinding experiments using grinding aids using a stirred ball mill have been performed on grinding rate constant based on grinding kinetics. (omitted)

  • PDF

나노크기의 ZrO2와 Graphite 분말 혼합체의 열탄소환원법에 의한 고분산 초미립 ZrC 분말의 합성 (Facile Synthesis of Highly Dispersed Ultra-fine ZrC Powders by Carbothermal Reduction Method Using Nanosized ZrO2 and Nanosized Graphite Powder Mixtures)

  • 이화준;류성수
    • 한국분말재료학회지
    • /
    • 제20권2호
    • /
    • pp.100-106
    • /
    • 2013
  • Ultra-fine zirconium carbide (ZrC) powder with nano-sized primary particles was synthesized by the carbothermal reduction method by using nano-sized $ZrO_2$ and nano-sized graphite powders mixture. The synthesized ZrC powder was well dispersed after simple milling process. After heat-treatment at $1500^{\circ}C$ for 2 h under vacuum, ultra-fine ZrC powder agglomerates (average size, $4.2{\mu}m$) were facilely obtained with rounded particle shape and particle size of ~200 nm. Ultra-fine ZrC powder with an average particle size of 316 nm was obtained after ball milling process in a planetary mill for 30 minutes from the agglomerated ZrC powder.

초미세 분쇄한 삼백초(Saururus chinensis) 추출물의 항산화, angiotensinconverting enzyme 및 xanthin oxidase 억제 활성 (Antioxidant, angiotensinconverting enzyme and xanthin oxidase inhibitory activity of extracts from Saururus chinensis leaves by ultrafine grinding)

  • 조영제
    • 한국식품저장유통학회지
    • /
    • 제21권1호
    • /
    • pp.75-81
    • /
    • 2014
  • 초미세 분쇄를 하였을 때 입자가 작아질수록 추출수율이 높아져 약 2.5배 높은 추출수율을 나타내었다. 일반 분쇄한 시료 추출물에서 69.8%의 전자공여능 억제효과가 관찰되었고, 미세분쇄와 초미세분쇄 추출물에서는 각각 70.7과 83.8%의 억제효과를 나타내었다. 일반분쇄 추출물과 미세분쇄 및 초미세분쇄 후 추출물 모두 97% 이상의 높은 ABTS 억제효과를 나타내어 분쇄 방법에 따른 항산화력의 차이는 거의 없었다. 일반 분쇄한 시료 추출물 보다 미세분쇄와 초미세분쇄 추출물에서 더 높은 PF값을 확인하였으며, 50% ethanol 초미세분쇄 추출물에서 1.8 PF로 가장 높은 항산화력을 나타내었다. 미세분쇄와 초미세분쇄 추출물에서는 일반분쇄 추출물에 비해 입자크기가 작아질수록 TBARS 억제율이 높아지며, 물 추출물보다 ethanol 추출물의 효과가 더 우수한 것으로 확인되었다. Xanthin oxidase 저해의 경우 초미세분쇄 후 효소억제 증대 효과를 확인할 수 있었다. Angiotensin converting enzyme 억제활성은 일반분쇄 추출의 경우 물 추출물에서는 억제활성이 나타나지 않았고, 50% ethanol 추출물에서 24%의 억제율이 확인되었다. 또한, ethanol 추출물의 억제효과가 물 추출물에 비해 상대적으로 우수하였다. 50% ethanol 초미세분쇄 추출물에서 Staphylococcus aureus, Escherichia coli에 대해서 아주 약한 항균효과를 나타내었을 뿐 나머지 추출물에서의 항균효과는 거의 관찰되지 않았다.

Nano-Scale Pulverizer (NSP)와 Ultra-Fine Pulverizer (UFP)로 물리적 변성된 옥수수전분 섭취가 흰쥐의 성장능력 및 장기능에 미치는 영향 (Effect of Dietary Intake of Ultra-fine or Nano-Scale Pulverized Cornstarch on the Growing Performance and Gut Function in Rats)

  • 이혜성;주다님;김보람;김선희;한명륜;김명환;장문정
    • Journal of Nutrition and Health
    • /
    • 제42권8호
    • /
    • pp.740-749
    • /
    • 2009
  • 본 연구는 ultra-fine pulverizer 또는 nano-scale pulverizer로 초미세분쇄시켜 입자크기가 감소된 옥수수전분의 섭취로 인한 생리적 기능성을 탐색한 결과는 다음과 같다. 1) 각 실험식이군의 식이 섭취량은 UFC군, NAC군은 차이가 없었으며, NSC군에서 유의하게 낮았다. NSC군의 식이 섭취량이 낮았음에도 불구하고 체중증가량이 많아 식이효율은 NSC군에서 가장 높았다. 2) 간, 신장의 무게는 UFC군 > NSC군 > NAC군순으로 높았다. 3) 소장의 무게는 UFC군이 NAC군에 비해 유의하게 높았으며, 소장의 길이는 각 실험군에서 유의적인 차이가 없었으며 맹장의 무게 및 장통과 시간도 유의적인 차이가 없었다. 4) 맹장내 단쇄지방산의 함량은 NSC군이 UFC군이나 NAC군에 비해 유의하게 높아 장내 미생물에 의한 발효가 활성화되고 있었으며 장내 Bifidobacterium 증식도 NSC군이 다른 군에 비해 활발하였다. 5) 소장세포의 증식은 NSC군에서 낮았다. 이상의 결과로 볼때 nano-scale로 입자의 크기가 감소된 옥수수 전분은 소화흡수율을 증가시켜 성장능력을 증진하는 것으로 나타났으며, Bifidobacterium 증식 촉진, 단쇄 지방산 생성을 촉진하는 효과를 갖고 있어 상대적인 영양밀도를 높이는 기능성을 갖고 있는 것으로 나타났다. 따라서 장기능이 미숙한 유아기, 장기능이 불완전하거나 미약한 환자, 노인등의 특수목적 영양식의 기본재료로 활용될 수 있음을 제안한다.

ULTRA-FINE PARTICLES AND GASEOUS VOLATILE ORGANIC COMPOUND EXPOSURES FROM THE REACTION OF OZONE AND CAR-AIR FRESHENER DURING METROPOLIS TRAVEL

  • Lamorena, Rheo B.;Park, Su-Mi;Bae, Gwi-Nam;Lee, Woo-Jin
    • Environmental Engineering Research
    • /
    • 제12권2호
    • /
    • pp.72-80
    • /
    • 2007
  • Experiments were conducted to identify the emissions from the car air freshener and to identify the formation of ultra-fine particles and secondary gaseous compounds during the ozone-initiated oxidations with emitted VOCs. The identified primary constituents emitted from the car air freshener in this study were $\alpha$-pinene, $\beta$-pinene, $\rho$-cymene and limonene. Formation of ultra-fine particles (4.4-160 nm) was observed when ozone was injected into the chamber containing emitted monoterpenes from the air freshener. Particle number concentrations, particle mass concentrations, and surface concentrations were measured in time dependent experiments to describe the particle formation and growth within the chamber. The irritating secondary gaseous products formed during the ozone-initiated reactions include formaldehyde, acetaldehyde, acrolein, acetone, and propionaldehyde. Ozone concentration (50 and 100 ppb) and temperature (30 and $40^{\circ}C$) significantly affect the formation of particles and gaseous products during the ozone-initiated reactions. The results obtained in this study provided an insight on the potential exposure of particles and irritating secondary products formed during the ozone-initiated reaction to passengers in confined spaces.

직접 광대전의 대전특성에 관한 실험적 연구 (An Experimental Study on the Characteristics of Direct Photoelectric Charging)

  • 이창선;김용진;김상수
    • 대한기계학회논문집B
    • /
    • 제24권6호
    • /
    • pp.753-759
    • /
    • 2000
  • Photoelectric charging is a very efficient way of charging small particles. This method can be applied to combustion measurement, electrostatic precipitator, metal separation and control of micro-contamination. To understand the photoelectric charging mechanism, particle charging of silver by exposure to ultraviolet is investigated in this study. Average charges and charge distributions are measured at various conditions, using two differential mobility analyzers, a condensation nucleus counter, and an aerosol electrometer. The silver particles are generated in a spark discharge aerosol generator. After that process, the generated particles are charged in the photoelectric charger using low-pressure mercury lamp that emits ultraviolet having wavelength 253.7 nm. The results show that ultra-fine particles are highly charged by the photoelectric charging. The average charges linearly increase with increasing particle size and the charge distribution change with particle size. These results are discussed by comparison with previous experiments and proposed equations. It is assumed that the coefficient of electron emission probability is affected by initial charge. The results also show that the charge distribution of a particle is dependent on initial charge. Single changed particle, uncharged particle and neutralized particle are compared. The differences of charge distribution in each case increase with increasing particle size.

Mechanical and microstructural study of rice husk ash geopolymer paste with ultrafine slag

  • Parveen, Parveen;Jindal, Bharat Bhushan;Junaid, M. Talha;Saloni, Saloni
    • Advances in concrete construction
    • /
    • 제8권3호
    • /
    • pp.217-223
    • /
    • 2019
  • This paper presents the mechanical and microstructural properties of the geopolymer paste which was developed by utilizing the industrial by-products, rice husk ash (RHA) and ultra-fine slag. Ultra-fine slag particles with average particle size in the range of 4 to 5 microns. RHA is partially replaced with ultra-fine slag at different levels of 0 to 50%. Sodium silicate to sodium hydroxide ratio of 1.0 and alkaline liquid to binder (AL/B) ratio of 0.60 is taken. Setting time, compressive, flexural strengths were studied up to the age of 90 days with different concentrations of NaOH. The microstructure of the hybrid geopolymer paste was studied by performing the SEM, EDS, and XRD on the broken samples. RHA based geopolymer paste blended with ultrafine slag resulted in high compressive and flexural strengths and increased setting times of the paste. Strength increased with the increase in NaOH concentration at all ages. The ultra-small particles of the slag acted as a micro-filler into the paste and enhanced the properties by improving the CASH, NASH, and CSH. The maximum compressive strength of 70MPa was achieved at 30% slag content with 16M NaOH. The results of XRD, SEM, and EDS at 30% replacement of RHA with ultra-fine slag densified the paste microstructure.

Dispersion stability of ultra-fine $BaTiO_3$ suspensions in aqueous medium

  • Chun, M.P.;Chung, Y.B.;Ma, Y.J.;Cho, J.H.;Kim, B.I.
    • 한국결정성장학회지
    • /
    • 제15권6호
    • /
    • pp.239-243
    • /
    • 2005
  • The effect of pH and particle size on the dispersion stability of ultra-fine $BaTiO_3$ suspensions in aqueous medium have been investigated by means of zeta potential, sediment experiments, and powder properties (particle analysis, specific surface area) etc. Zeta potential as a function of pH for two particles of different size increases from -75 to +10 mV with decreasing pH from 8.5 to 1.4. The curve of zeta potential for small particle (150 nm) has slow slope than that of large particle (900nm), giving IEP (isoelectric point) value of pH=1.6 for small particle and pH=1.9 for large particle respectively, which means that it is more difficult to control zeta potential with pH fur small particle than large particle. The dispersion stability of $BaTiO_3$ particles in aqueous medium was found to be strongly related with the agglomeration of colloidal suspensions with time through the sedimentation behaviors of colloidal particles with time and pH value.