• 제목/요약/키워드: Ultra-Precision Technology

검색결과 348건 처리시간 0.019초

DLC 및 Re-Ir 코팅에 의한 성형용 코어면의 코팅 효과 (Coating Effect of Molding Core Surface by DLC and Re-Ir Coating)

  • 김현욱;차두환;이동길;김상석;김혜정;김정호
    • 한국정밀공학회지
    • /
    • 제26권1호
    • /
    • pp.51-56
    • /
    • 2009
  • Recently, with the increasing lightness and miniaturization of high resolution camera phones, the demand for aspheric glass lens has increased because plastic and spherical lens are unable to satisfy the required performance. An aspheric glass lens is fabricated by the high temperature and pressure molding using a tungsten carbide molding core, so precision grinding and coating technology for the molding core surface are required. This study investigates the effect of diamond-like carbon (DLC) and rhenium-iridium (Re-Ir) coating For aspheric molding core surface. The grinding conditions of the tungsten carbide molding core were obtained by design of experiments (DOE) for application in the ultra precision grinding process of the tungsten carbide molding core of the aspheric glass lens used in 5 megapixel, $4{\times}$ zoom camera phone modules. A tungsten carbide molding core was fabricated under this grinding condition and coated with the DLC and Re-Ir coating. By measurements, the effect of DLC and Re-Ir coating on the form accuracy and surface roughness of molding coer was evaluated.

초정밀 경사축 연삭가공에서의 공구 궤적 해석 (Tool Locus Analysis of Ultra-precision Inclined Grinding)

  • 황연;박순섭;이기용;원종호;김현호
    • 한국정밀공학회지
    • /
    • 제26권11호
    • /
    • pp.35-40
    • /
    • 2009
  • This paper presents the geometrical analysis of an inclined ultra-precision grinding technology using simulations about grinding point locus for micro lens manufacturing. Simulation results show the relationship between radius ratios ($R_1/R_2$) and wheel center locus. Furthermore, the critical grinding wheel radius ($R_1$) can be calculated from work-piece radius ($R_2$) and inclined angle ($\theta=-45^{\circ}$). These achievements could be applied to calculate CNC data in ultra-precision grinding and give insight for wheel wear and compensation grinding.

초정밀서보기구의 제어성능 평가(II) (Control performance evaluation of ultra precision servo apparatus(II))

  • 김재열;김영석;곽이구;마상동;한재호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.617-620
    • /
    • 2000
  • Recently, High accuracy and precision are required in various industrial field especially, semiconductor manufacturing apparatus, Ultra precision positioning apparatus, Information field and so on. Positioning technology is a very important one among them. Is such technology has been rapidly developed, this field needs the positioning accuracy as high as submicron. It is expected that the accuracy of 10nm and 1nm is required in precision work and ultra precision work field, respectively by the beginning of 2000s. High speed and low vibration are also needed. This work deals with the design method and control system of Ultra precision positioning apparatus. We will examine the control performance and stability before manufacturing the real apparatus by using MATLAB SIMULINK based or pre-designed controller and system modeling.

  • PDF

Feedrate Control에 의한 초경코어 표면조도 향상에 관한 연구 (A Study on Improvement of WC Core Surface Roughness by Feedrate Control)

  • 김현욱;정상화;이동길;김상석;김혜정;김정호
    • 한국정밀공학회지
    • /
    • 제26권1호
    • /
    • pp.57-62
    • /
    • 2009
  • Recently, with the increasing lightness and miniaturization of high resolution camera phones, the demand for aspheric glass lens has increased because plastic and spherical lens are unable to satisfy the required performance. An aspheric glass lens is fabricated by the high temperature and pressure molding using a tungsten carbide molding core, so precision grinding technology for the molding core surface are required. This paper reports a development of feedrate control grinding method for aspherical molding core using parallel grinding method. A plane molding core was ground using conventional and feedrate control grinding method. The performance of the feedrate control method was evaluated by measurement of surface roughness. The result indicated that the average surface roughness was reduced to 1.5 nm, which is more efficient than the conventional grinding method.

초정밀 스테이지 설계 및 제어 시스템에 관한 연구 (A study of the design and control system for the ultra-precision stage)

  • 박종성;정규원
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.54-59
    • /
    • 2005
  • Recently, the ultra-precision stage is widely used in the fields of the nano-technology, specially in AFMs(Atomic Force Microscope) and STMs(Scanning Tunneling Microscope). In this paper, the ultra-precision stage which consists of flexure hinges, piezoelectric actuator, and ultra-precision linear encoder, is designed and developed. The guide mechanism which consisted of flexure hinges is analyzed by Finite Element Method. And we derived the transfer function of the system in 1st order system from step responses according to the magnitude. We performed simulation for the model to tune the control gain and applied the gains to the developed system. Experimental results found that the stage can be controlled in 5 nm resolution by PID controller.

  • PDF

초정밀가공 기술을 이용한 광학 마이크로패턴의 광 반사 효과에 관한 연구 (Research on Light Reflection Effect of the Optical Micro Pattern Using Ultra-Precision Technology)

  • 유춘근;윤철용;현동훈
    • 한국생산제조학회지
    • /
    • 제18권6호
    • /
    • pp.621-628
    • /
    • 2009
  • Because the Ultra-Precision Technology increase its competitiveness in the field of the design, precision of processing technology, confidence and fixation degree are major considerations. According to Pattern shapes using these processing technologies, Light Reflection has influence on the sense of sight about human being. Based on background of these studies, we draw a plan about a round workpiece using a 3D design program and analyze the effect on Light Reflection changing a pattern angle and a source of light through SPEOS program in this research. We make Pattern form as V-Shape, and compare the area distributed by Light Reflection by classifying angle into 4 and analyze changes according to a source of light. In order to measure and evaluate the data from simulation analysis we has manufactured Diamond Tool and has processed Pattern precision using a Ultra-Precision Machine. Based on the result of this study, we forecast that the field of design will achieve rapid growth due to Ultra-Precision Technology in the world market.

  • PDF

초정밀 가공기용 마이크로 스테이지의 힌지 형상과 재질 변화에 따른 안정성 해석 (Stability Analysis of a Micro Stage for Micro Cutting Machine with Various Hinge Type and Material Transformation)

  • 김재열;곽이구;유신
    • 한국정밀공학회지
    • /
    • 제20권7호
    • /
    • pp.233-240
    • /
    • 2003
  • Recently, the world are preparing for new revolution, called as If (Information Technology), NT (Nano-Technology), and BT (Bio-Technology). NT can be applied to various fields such as semiconductor-micro technology. Ultra precision processing is required for NT in the field of mechanical engineering. Recently, together with radical advancement of electronic and photonics industry, necessity of ultra precision processing is on the increase for the manufacture of various kernel parts. Therefore, in this paper, stability of ultra precision cutting unit is investigated, this unit is the kernel unit in ultra precision processing machine. According to alteration of shape and material about hinge, stability investigation is performed. In this paper, hinge shapes of micro stage in UPCU(Ultra Precision Cutting Unit) are designed as two types, where, hinge shapes are composed of round and rectangularity. Elasticity and strength are analyzed about micro stage, according to hinge shapes, by FE analysis. Micro stage in ultra precision processing machine has to keep hinge shape under cutting condition with 3-component force (cutting component, axial component, radial component) and to reduce modification against cutting force. Then we investigated its elasticity and its strength against these conditions. Material of micro stage is generally used to duralumin with small thermal deformation. But, stability of micro stage is investigated, according to elasticity and strength due to various materials, by FE analysis. Where, Used materials are composed of aluminum of low strength and cooper of medium strength and spring steel of high strength. Through this stability investigation, trial and error is reduced in design and manufacture, at the same time, we are accumulated foundation data for unit control.

렌즈 성형용 유리탄소 금형의 초정밀연삭 (Ultraprecision Grinding of Glassy Carbon Core for Mold Press Lens)

  • 황연;차두환;김정호;김혜정
    • 한국정밀공학회지
    • /
    • 제29권3호
    • /
    • pp.261-265
    • /
    • 2012
  • In this study, glassy carbon was ground for lens core of glass mold press. Ultraprecision grinding process was applied for machining of core surfaces. During the process, brittle crack occurred because of hard-brittleness of glassy carbon. Author investigated optimized grinding conditions from the viewpoint of ductile mode grinding. Geometrical undeformed chip thickness was adopted for critical chip thickness that enables crack free surface. Machined cores are utilized for biaspheric glass lens fabrication and surfaces of lens were compared for verification of ground surface.

초정밀 스테이지의 강인 제어 (Robust Control for a Ultra-Precision Stage System)

  • 박종성;정규원
    • 대한기계학회논문집A
    • /
    • 제30권9호
    • /
    • pp.1094-1101
    • /
    • 2006
  • Recently, a ultra-precision stage is widely used in the fields of the nano-technology, specially in AFMs(Atomic Force Microscope) and STMs(Scanning Tunneling Microscope). In this paper, the ultra-precision stage which consists of flexure hinges, piezoelectric actuator and ultra-precision linear encoder, is designed and developed. The system transfer function of the ultra-precision stage system was derived from the step responses of the system using system identification tool. A $H_{\infty}$ controller was designed using loop shaping method to have robustness for the system uncertainty and external disturbances. For the designed controller, simulations were performed and it was applied to the ultra-precision stage system. From the experimental results it was found that this stage could be controlled with less than 5nm resolution irrespective of hysteresis and creep.

연속전해드레싱을 적용한 머신어블 세라믹의 초정밀 래핑 가공 (Ultra Precision Lapping of Machinable Ceramic by In-process Electrolytic Dressing)

  • 이은상;원종구
    • 한국공작기계학회논문집
    • /
    • 제12권3호
    • /
    • pp.1-7
    • /
    • 2003
  • In-process Electrolytic Dressing is a lapping method using electrolysis. This technology provides dressing to CIB-Diamond Lapping wheels during the lapping process for continuous protrude abrasive from super-abrasive wheels. so loading and glazing are disappeared apparently. Ultra-precision lapping of the machinable commies will be studied in the viewpoint of In-process Electrolytic Dressing. For ultra-precision lapping, need to develop an ultra-precision lapping system suitable metal bonded diamond wheel, and appropriate condition of u10a-precision lapping machining.