• 제목/요약/키워드: Ultra-Precision Positioning

검색결과 118건 처리시간 0.022초

초정밀 선삭가공을 위한 글로벌스테이지의 재현성 실험 (Global Stage of Reproducibility Experiment for Single Point Diamond Turning)

  • 박대광;곽남수;권대주;김재열
    • 한국생산제조학회지
    • /
    • 제22권6호
    • /
    • pp.982-988
    • /
    • 2013
  • With conventional positioning apparatus, it is very difficult to simultaneously achieve the desired driving range and precision at the sub-micrometer level. Generally, lead screw and friction drive, etc., have been used as servo control systems. These have large driving ranges, and high-speed positioning is feasible. In this study, we present a global servo system controlled by a laser interferometer acting as a displacement measurement sensor for achieving positioning accuracy at the sub-micrometer level.

플렉셔 구조의 병렬형 선형 안내기구를 이용한 2 축 초정밀 스테이지 (A Two-Axis Ultra-precision Stage Using Flexure-type Parallel Linear Guide Mechanism)

  • 최기봉
    • 한국정밀공학회지
    • /
    • 제23권1호
    • /
    • pp.129-135
    • /
    • 2006
  • In this study, a two-axis ultra-precision stage driven by piezoelectric elements is presented. The stage has a flexure-type parallel linear guide mechanism consisting of quad-symmetric simple parallel linear springs and quad-symmetric double compound linear springs. While the simple parallel linear springs guide the linear motion of a moving plate in the stage, the double compound linear springs follow the motion of the simple parallel linear spring as well as compensate the parasitic motions caused by the simple parallel linear springs. The linear springs are designed by rectangular beam type flexures that are deformed by bending deflection rather than axial extension, because the axial extension is smaller than the bending deflection at the same force. The designed guide mechanism is analyzed by finite element method(FEM). Then two-axis parallel linear stage is implemented by the linear guide mechanism combined with piezoelectric elements and capacitance type displacement sensors. It is shown that the manufactured ultra-precision stage achieves 3 nm of resolution in x- and y-axis within 30 ${\mu}m$ of operating range.

초정밀 가공기의 개발 동향 및 기술적 이슈 (Current Status and Technical Issues of Ultra-precision Machine Tools)

  • 오정석;김창주;박천홍;최영재
    • 한국정밀공학회지
    • /
    • 제31권3호
    • /
    • pp.189-197
    • /
    • 2014
  • Diffractive optical elements (DOEs) - in general a complex pattern of micro- and nano-scale structures - can modulate and transform light in a predetermined way. Their importance is being increased nowadays because they can be designed to handle a number of simultaneous tasks. In view point of machining DOEs, it is a big challenge to fabricate micro- and nano-scale structures on a free-form surfaces. In this paper, the state-of-the-art of the ultra-precision machine tools is reviewed. Also some technical issues which determine the machine tool accuracy are discussed.

Burr의 In-process 계측에 관한 연구 (A Study on the In-process measurement of Burrs)

  • 박동삼
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.242-246
    • /
    • 1996
  • Accurate measurements of burr profile and burr size are very important for the automation of deburring. In this paper, a new burr measurement system using capacitance sensor is proposed. Ultra precision milling machine was used as a sensor positioning system. The possibility and limitation of employing a capacitance sensor to defect burrs are also investigated. The proposed system is proven to be relatively accurate, easy to setup and lower cost. This system will be applicable to a fully automated deburring system with minor modifications.

  • PDF

전자빔 가공기용 진공 5축 스테이지의 제어 및 운동특성 (The Control and Motion Characteristics of 5 axis Vacuum Stage for Electron Beam Lithography)

  • 이찬홍;박천홍;이후상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.890-893
    • /
    • 2004
  • The ultra precision machining in industrial field are increased day by day. The diamond turning has been used generally, but now is faced with limitation of use, because of higher requirement of production field. The electron beam lithography is alternative in machining area as semiconductor production. For EB lithography, 5 axis vacuum stage is required to duplicate small and large patterns on wafer. The stage is composed of 2 rotational axis and 3 translational axis with 5 DC servo motors. The positioning repeatability and resolution of Z axis feed unit are 3.21$\mu$m and 0.5 $\mu$m/step enough to apply to lithography.

  • PDF

다점 지지 고출력 고정도 초음파 모터 (A High power and Precision Ultrasonic Linear Motor with Multi-support Mechanism)

  • 이선규;윤철호;이현민;차현록;김완수;강장성
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.151-152
    • /
    • 2006
  • Nowadays, great attention has been shown to the question of ultrasonic linear motor for accomplishing the high positioning accuracy and high driving force in the semiconductor and optical industry. Ultrasonic linear motors have many advantages such as simple structure, quick response, ability to maintain position without energy consumption, and electromagnetic effect. And BLT has attracted attention to accomplish large vibration amplitude and large mechanical force. Authors designed and developed the new type of ultra sonic linear motor with multi support mechanism, achieved 75N of output force and 0.45m/s of velocity.

  • PDF

An Indoor Localization Algorithm of UWB and INS Fusion based on Hypothesis Testing

  • Long Cheng;Yuanyuan Shi;Chen Cui;Yuqing Zhou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권5호
    • /
    • pp.1317-1340
    • /
    • 2024
  • With the rapid development of information technology, people's demands on precise indoor positioning are increasing. Wireless sensor network, as the most commonly used indoor positioning sensor, performs a vital part for precise indoor positioning. However, in indoor positioning, obstacles and other uncontrollable factors make the localization precision not very accurate. Ultra-wide band (UWB) can achieve high precision centimeter-level positioning capability. Inertial navigation system (INS), which is a totally independent system of guidance, has high positioning accuracy. The combination of UWB and INS can not only decrease the impact of non-line-of-sight (NLOS) on localization, but also solve the accumulated error problem of inertial navigation system. In the paper, a fused UWB and INS positioning method is presented. The UWB data is firstly clustered using the Fuzzy C-means (FCM). And the Z hypothesis testing is proposed to determine whether there is a NLOS distance on a link where a beacon node is located. If there is, then the beacon node is removed, and conversely used to localize the mobile node using Least Squares localization. When the number of remaining beacon nodes is less than three, a robust extended Kalman filter with M-estimation would be utilized for localizing mobile nodes. The UWB is merged with the INS data by using the extended Kalman filter to acquire the final location estimate. Simulation and experimental results indicate that the proposed method has superior localization precision in comparison with the current algorithms.

렌티큘러 스티커를 이용한 커버리지 구현 연구 (Study of Coverage Implementation Using Lenticular Sticker)

  • 정승혁
    • 한국전자통신학회논문지
    • /
    • 제14권3호
    • /
    • pp.573-578
    • /
    • 2019
  • 최근 실내 측위의 기술이 발달함에 따라 기지국 측위, 와이파이 측위 및 블루투스 비콘 측위 기술이 건물 및 지하공간에 도입되어 운용되고 있다. 이는 시스템과 서비스를 제공하는 공급자 중심의 측위로 사용자의 동선기반에서 사용자가 직접 측위하는 방식인 렌티큘러 측위 기술을 도입하여, 사용자 중심의 초고정밀 측위가 가능한 기술을 소개한다. 렌티큘러 스티커를 활용한 커버리지 구현 방안 연구를 통해 렌티큘러 측위 기술의 가장 중요한 부분 중 하나인 렌티큘러 스티커의 커버리지 구현 방안에 대해 살펴보고, 사용자 관점의 짧은 측위 시간의 결과 값을 제시하고자 한다.

Integrating GPS/INS/PL for Robust Positioning: The Challenging Issues

  • Wang, Jinling;Babu, Ravindra;Li, Di;Chan, Franics;Choi, Jin-Ho
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.127-132
    • /
    • 2006
  • The Global Positioning System (GPS), Inertial Navigation System (INS) and Pseudolite (PL) technologies all play very important roles in navigation systems. As an independent navigation system, GPS can provide high precision positioning results which are independent of time. However, the performance will become unreliable when the system experiences high dynamics, or when the receiver is exposed to jamming or RF interference. In comparison to GPS, though INS is autonomous and provides good short-term accuracy, its use as a standalone navigation system is limited due to the time-dependent growth of the inertial sensor errors. PLs are ground-based transmitters that can transmit GPS-like signals. They have some advantages in that their positions can be determined precisely, and the Signal-to-Noise Ratios (SNR) are relatively high. Because their combined performance, in principle, overcomes the shortcomings of the individual systems, the integration of GPS, INS and PL is increasingly receiving attention from researchers. Depending on the desired performance vs complexity, system integration can be carried out at different levels, namely loose, tight and ultra-tight coupling. Compared with loose and tight integration, although it is more complex in terms of system design, ultra-tight integration will be the basis of the next generation of reliable and robust navigation systems. Its main advantages include improved performance under exposure to high dynamics, and jamming and RF interference mitigation. This paper presents an overview of the ultra-tight integration developments and discusses some of the challenging issues.

  • PDF

대형 광학계 연마 장비에 의한 대구경 반사경의 최적 근사 구면 제조 방법에 관한 연구 (An Optical Surfacing Technique of the Best-fitted Spherical Surface of the Large Optics Mirror with Ultra Precision Polishing Machine)

  • 송창규;김경호;황주호;김병섭;박천홍;이호철
    • 한국정밀공학회지
    • /
    • 제30권3호
    • /
    • pp.324-330
    • /
    • 2013
  • This paper describes a novel method to surface large optics mirror with an extremely high hardness, which could replace the high cost of the repetitive off-line measurement steps and the large ultra-precision grinding machine with ultra-positioning control of 10 nm resolution. A lot of diamond pellet to be attached on the convex aluminum base consists of a grinding tool for the concave large mirror, and the tool was pressured down on the large mirror blank. The tool motion at an interval on the spiral path was controlled with each feed rate as the dwell time in the conventional computer-controlled polishing. The shape to be surfaced was measured directly by a touch probe on the machine without any separation of the mirror blank. Total 40 iterative steps of the surfacing and measurement could demonstrate the form error of RMS $7.8{\mu}m$, surface roughness of Ra $0.2{\mu}m$ for the mirror blank with diameter of 1 m and spherical radius of curvature of 5400 mm.