• 제목/요약/키워드: Ultra supercritical

검색결과 27건 처리시간 0.023초

초초임계 순환유동층 보일러 기술 소개 및 현황 (Introduction and Current Status of Ultra Supercritical Circulating Fluidized Bed Boiler)

  • 이시훈;이종민
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권2호
    • /
    • pp.211-221
    • /
    • 2016
  • 전세계의 인구 증가와 경제 발전은 지속적인 에너지 수요의 증가를 가져오고 있다. 특히, 전력부분에서는 아시아 및 아프리카, 그리고 중남미 등의 개발도상국을 중심으로 그 수요가 지속적으로 증가하고 있어 주요 에너지원인 석탄의 이용도 지속적으로 증가할 것으로 예측되고 있다. 그러나, 이산화탄소 및 대기오염원, 그리고 미세먼지 등의 배출 등은 석탄을 이용한 전력생산에 있어 환경친화적인 기술로의 대응방안 마련과 더불어, 고효율의 다양한 저급연료를 활용할 수 있는 발전 기술의 개발이 요구되고 있다. 이에, 기술개발 및 그 상용화 시장이 점차 증대되고 있는 초초임계 순환유동층 보일러에 대한 관심이 증대하고 있다. 초초임계 순환 유동층 보일러는 중소형의 아임계의 드럼형 구조에서 벗어나 대용량화의 기본 구조인 Once Through 형태의 증기 순환 구조를 지니고 100-300 MWe의 상업용 모듈의 복제를 통해 600 MW급이 상용화 운전 중에 있으며, 향후 설계가 완성된 800 MWe의 상업화 진행이 기대되고 있다. 초초임계 순환유동층 보일러는 2017년 이후 아임계 순환유동층 보일러 설치 용량을 추월하여 표준형 모델이 될 것으로 전망되고 있어, 본 논문에서의 이의 기술적 배경과 개발 현황 그리고 시장전망 등을 통해 기술적 이해를 도모하고자 한다.

크리프와 등온열화에 따른 초초임계압 발전설비용 페라이트계 11Cr-3.45W 내열합금강의 미세조직 변화 (Microstructural Development of Ferritic 11Cr-3.45W Heat-resistance Steel for Ultra-supercritical Power Plant During Creep and Thermal Aging)

  • 김정석
    • 열처리공학회지
    • /
    • 제31권3호
    • /
    • pp.91-96
    • /
    • 2018
  • Microstructural development of ferritic 11Cr-3.45W heat-resistance steel for ultra-supercritical power plant during creep and thermal aging was investigated using electron microscopy. The test samples were isothermally aged at $700^{\circ}C$ for up to 4000 hours and subjected to creep loading at $700^{\circ}C$ for predetermined periods of lifetime to prepare the damaged materials. In this structural material, a various secondary phases are the primary influence on mechanical properties of ferritic heat-resistance steel. The typical precipitates of $M_{23}C_6$, MX and $M_2X$ secondary phases had been analyzed through qualitative and quantitative manner. Coarsening of precipitates and increase of lath width were observed during creep and thermal aging. This phenomenon was remarkable for creep process compared with isothermal aging process.

Supplementary Control of Conventional Coordinated Control for 1000 MW Ultra-supercritical Thermal Power Plant using Dynamic Matrix Control

  • Lee, Youngjun;Yoo, Euiyeon;Lee, Taehyun;Moon, Un-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.97-104
    • /
    • 2018
  • This paper proposes supplementary control of conventional coordinated control of a power plant which directly affects network frequency. The supplementary control with dynamic matrix control is applied for 1000 MW power plant with ultra-supercritical (USC) once-through boiler. The supplementary control signal is added to the boiler feedforward signal in the existing coordinated control logic. Therefore, it is a very practical structure that can maintain the existing multi-loop control system. This supplementary controller uses the step response model for the power plant system, and on-line optimization is performed at every sampling step. The simulation results demonstrate the effectiveness of the proposed supplementary control in a wide operating range of a practical 1000 MW USC power plant simulator. These results can contribute the stable operation of power system frequency.

화약제조 공정의 초임계 유체 응용 (Application of Supercritical Fluid in Energetic Materials Processes)

  • 송은석;김화용;김현수;이윤우
    • 한국군사과학기술학회지
    • /
    • 제9권3호
    • /
    • pp.77-87
    • /
    • 2006
  • Micro- or nano-size particles are required to improve the combustion efficiency and stability in the case of solid explosives and propellants. The micro-structural properties of an energetic material strongly influence the combustion and explosion behavior. However, the traditional size reduction techniques, including milling, are not suitable for production of ultra-fine size particles. As an alternative to the traditional techniques, various re-crystallization processes based on supercritical fluids have recently been proposed. Supercritical fluids are fluids at temperatures and pressures above their critical point. In principle, they do not give problems of solvent contamination as they are completely released from the solute when the decompression occurs. Rapid Expansion Supercritical Solutions(RESS) and Supercritical Anti-Solvent Process(GAS/SAS) are representatives of a nano-size particle formation process of energetic materials using supercritical fluids. In this work, various fine particle formation processes using supercritical fluids are discussed and the results are presented.

초임계 유체를 이용한 초미립 TiO$_2$ 제조 (Fabrication of Ultra-Fine TiO$_2$ Powders Using Supercritical Fluid)

  • 송정환;임대영
    • 한국세라믹학회지
    • /
    • 제35권10호
    • /
    • pp.1049-1054
    • /
    • 1998
  • In order to fabricate ideal powders new processing is necessary in which the solute atoms in solution ra-pidly move to mix each other to the degree of molecular level the viscosity of solution should be low not to effect the moving of solute atoms and the powders could be directly obtained as crystalline. Supercritical fluid is defined as condensed gas sated up to its critical pressure and temperature. In this paper su-percritical fluid methods were studied as a new ceramic processing of powder preparation. The crystalline powders of TiO2 which are useful for electronic ceramic materials were fabricated by hydrolysis of titanium (IV) ethoxide using ethanol as a supercritical fluid at the condition of 270$\pm$3$^{\circ}C$, 7.3 MPa for 2hr. The cry stalline anatase powders could be directly obtained and its primary particle size was 20 min.

  • PDF

초초임계압 석탄화력 보일러 수냉벽 수관의 용접신뢰성 향상방안 (Reliability Improvement Method of Weld Zone in Water Wall Tube for an Ultra Supercritical Coal Fired Boiler)

  • 안종석;문승재
    • 플랜트 저널
    • /
    • 제6권3호
    • /
    • pp.53-61
    • /
    • 2010
  • This paper presents failure analysis on weld-joint of the waterwall tubes in USC boilers. Visual inspections were performed to find out the characteristics of the fracture. Additionally both microscopic characteristics and hardness test were carried out on failed tube samples. Failures seem to happen mainly because the welding process such as preheating and PWHT(post-weld heat treatment) was not conducted strictly. Thus, this paper has the purpose to describe the main cause of the poor welding process and to explain how to prevent similar failures in those weld-joints.

  • PDF

석탄화력발전용 초초임계압(USC) 보일러 수냉벽 튜브 용접 신뢰성 향상에 대한 연구 (Study on the Improvement of Weld-joint Reliability in Waterwall Tubes of the Ultra Supercritical Coal Fired Boiler)

  • 안종석;이승현;조상기;이길재;이창희;문승재
    • Journal of Welding and Joining
    • /
    • 제28권1호
    • /
    • pp.41-46
    • /
    • 2010
  • The low alloy-steel material(1.0Cr-0.5Mo, SA213T12), which has widely been used for the waterwall tube in the conventional power plant, do not have enough creep rupture strength for waterwall tubes of the Ultra-supercritical(USC) boilers. According to this reason, the high-strength low alloy-steel(2.25Cr-1.0Mo, SA213T22) has newly been adopted for the waterwall tube in the USC boilers. This paper presents failure analysis on weld-joint of the waterwall tubes in USC boilers. Visual inspections were performed to find out the characteristics of the fracture. Additionally both microscopic characteristics and hardness test were carried out on failed tube samples. Failures seem to happen mainly because the welding process has not been conducted strictly.(preheating, P.W.H.T and so forth). Thus, this paper has the purpose to describe the main cause of the poor welding process and to explain how to prevent similar failures in those weld-joints.

유동해석을 이용한 고압증기터빈 단효율 변화 예측 (Rediction of Stage Efficiency Variation of a USC High Pressure Steam Turbine by Computational Fluid Dynamics)

  • 강수영;장혁준;이정진;김동섭;박성진;홍기원
    • 한국유체기계학회 논문집
    • /
    • 제20권2호
    • /
    • pp.17-25
    • /
    • 2017
  • Prediction of performance and operating characteristics of a state-of-the-art ultra-supercritical (USC) steam turbine is an important issue in many ways. Theoretical and empirical correlation equations, developed a few decades ago, have been widely used in commercial programs for a prediction of performance. To improve of these correlation equations and apply them to the high pressure turbine of a USC steam turbine, computational fluid dynamic analysis was carried out and correlation equations to calculate efficiency variation of each stage were made. Both fluid dynamic characteristic and thermodynamic performance was analyzed for the development of the correlation equations. In particular, the impact of flow addition through an overload valve (OLV) between stages was examined throughly. The trend of pressure drop due to the flow mixing by the OLV flow addition was analyzed and an efficiency correlation equation considering the OLV flow was also made.

Stability Characteristics of Supercritical High-Pressure Turbines Depending on the Designs of Tilting Pad Journal Bearings

  • Lee, An Sung;Jang, Sun-Yong
    • Tribology and Lubricants
    • /
    • 제37권3호
    • /
    • pp.99-105
    • /
    • 2021
  • In this study, for a high-pressure turbine (HPT) of 800 MW class supercritical thermal-power plant, considering aerodynamic cross-coupling, we performed a rotordynamic logarithmic decrement (LogDec) stability analysis with various tilting pad journal bearing (TPJB) designs, which several steam turbine OEMs (original equipment manufacturers) currently apply in their supercritical and ultra-supercritical HPTs. We considered the following TPJB designs: 6-Pad load on pad (LOP)/load between pad (LBP), 5-Pad LOP/LBP, Hybrid 3-Pad LOP (lower 3-Pad tilting and upper 1-Pad fixed), and 5-Pad LBPs with the design variables of offset and preload. We used the API Level-I method for a LogDec stability analysis. Following results are summarized only in a standpoint of LogDec stability. The Hybrid 3-Pad LOP TPJBs most excellently outperform all the other TPJBs over nearly a full range of cross-coupled stiffness. In a high range of cross-coupled stiffness, both the 6-Pad LOP and 5-Pad LOP TPJBs may be recommended as a practical conservative bearing design approach for enhancing a rotordynamic stability of the HPT. As expected, in a high range of cross-coupled stiffness, the 6-Pad LBP TPJBs exhibit a better performance than the 5-Pad LBP TPJBs. However, contrary to one's expectation, notably, the 5-Pad LOP TPJBs exhibit a slightly better performance than the 6-Pad LOP TPJBs. Furthermore, we do not recommend any TPJB design efforts of either increasing a pad offset from 0.5 or a pad preload from 0 for the HPT in a standpoint of stability.