• Title/Summary/Keyword: Ultra low NOx burner

Search Result 2, Processing Time 0.02 seconds

Experimental Study on 15MW partially premixed Low NOx burner (15MW급 부분예혼합 초저 NOx 가스연소기에 관한 실험적 연구)

  • Kwon, Minjun;Shin, Myongchul;Kim, Sewon;Lee, Changyeop
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.123-125
    • /
    • 2012
  • In this study, combustion characteristics for 20t/h water tube boilers are studied. The burner by applying The fuel staging technology, the air staging technology, the partially premixed technology, the separated flame technology and the flame inner recirculation technology was designed. This study was to determine the combustion characteristics for the three types of burners. It is found that the result of flame temperature measurement is less than $1300^{\circ}C$ at the all flame region. also, emissions of NOx and CO are found to be 15.8 ppm and 18.9 ppm, respectively.

  • PDF

Study on Operating Characteristics for NOx Reduction in Ultra Low NOx Burner Combustion Using 80 kW Furnace (80 kW 초 저 NOx 단일 버너 연소로에서 NOx 감소를 위한 운전특성 연구)

  • Chae, Taeyoung
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.211-220
    • /
    • 2020
  • This experimental study investigates the design parameters to achieve ultra low NOx combustion of coal using a 80 kW capacity single-burner furnace. The influence of key design parameters such as SN, overall and burner-zone equivalence ratios, primary/secondary air ratio, overfire air (OFA) ratio were tested for a total of 81 cases. The results showed that weak swirl intensity of the burner leads to higher NOx emission whereas strong swirl intensity accompanies increased CO concentration desipte lower NOx emission. Therefore, finding an appropirate swirl intensity is essential for the burner design. Larger flow rate of secondary air increased NOx emission, whereas smaller flow rate stretches the flame and increased CO emission. The lowest NOx emission of 82 ppm (6% O2) was achieved at the optimal condition of the present burner deisgn. It is expected to furrther lower the NOx emission by introducing splitting the burner secondary air into three or four streams.