• Title/Summary/Keyword: Ultra high performance concrete

Search Result 347, Processing Time 0.027 seconds

Strengthening of reinforced concrete beams subjected to torsion with UHPFC composites

  • Mohammed, Thaer Jasim;Abu Bakar, B.H.;Bunnori, N. Muhamad
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.123-136
    • /
    • 2015
  • The proposed techniques to repair concrete members such as steel plates, fiber-reinforced polymers or concrete have important deficiencies in adherence and durability. The use of ultra high performance fiber concrete (UHPFC) can overtake effectively these problems. In this paper, the possibility of using UHPFC to strengthen reinforced concrete beams under torsion is investigated. Seven specimens of concrete beams reinforced with longitudinal and transverse reinforcements. One of these beams consider as control specimen while the others was strengthened by UHPFC on four, three, and two sides. This study includes experimental results of all beams with different types of configurations and thickness of UHPFC. As well as, finite element analysis was conducted in tandem with experimental test. Results reveal the effectiveness of the proposed technique at cracking and ultimate torque for different beam strengthening configurations, torque - twist graphs and crack patterns. The UHPFC can generally be used as an effective external torsional reinforcement for RC beams. It was noted that the behavior of the beams strengthen with UHPFC are better than the control beams. This increase was proportional to the retrofitted beam sides. The use of UHPFC had effect in delaying the growth of crack formation. The finite element analysis is reasonably agreement with the experimental data.

Numerical analysis of circular steel tube confined UHPC stub columns

  • Hoang, An Le;Fehlinga, Ekkehard
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.263-273
    • /
    • 2017
  • In this paper, a finite element model (FEM) in ATENA-3D software was constructed to investigate the behavior of circular ultra high performance concrete (UHPC) filled steel tube stub columns (UHPC-FSTCs) under concentric loading on concrete core. The "CC3DNonLinCementitious2User" material type for concrete in ATENA-3D software with some modifications of material laws, was adopted to model for UHPC core with consideration the confinement effect. The experimental results obtained from Schneider (2006) were then employed to verify the accuracy of FEM. Extensive parametric analysis was also conducted to examine the influence of concrete compressive strength, steel tube thickness and steel yield strength on the compressive behavior of short circular UHPC-FSTCs. It can be observed that the columns with thicker steel tube show better strength and ductility, the sudden drop of load after initial peak load can be prevented. Based on the regression analysis of the results from parametric study, simplified formulae for predicting ultimate loads and strains were proposed and verified by comparing with previous analytical models, design codes and experimental results.

Synergistic bond properties of new steel fibers with rounded-end from carbon nanotubes reinforced ultra-high performance concrete matrix

  • Nguyen Dinh Trung;Dinh Tran Ngoc Huy;Dmitry Olegovich Bokov;Maria Jade Catalan Opulencia;Fahad Alsaikhan;Irfan Ahmad;Guljakhan Karlibaeva
    • Advances in nano research
    • /
    • v.14 no.4
    • /
    • pp.363-373
    • /
    • 2023
  • A novel type of steel fiber with a rounded-end shape is presented to improve the bonding behavior of fibers with Carbon Nanotubes (CNT)-reinforced Ultra-High Performance Concrete (UHPC) matrix. For this purpose, by performing a parametric study and using the nonlinear finite element method, the impact of geometric characteristics of the fiber end on its bonding behavior with UHPC has been studied. The cohesive zone model investigates the interface between the fibers and the cement matrix. The mechanical properties of the cohesive zone model are determined by calibrating the finite element results and the experimental fiber pull-out test. Also, the results are evaluated with the straight steel fibers outcomes. Using the novel presented fibers, the bond strength has significantly improved compared to the straight steel fibers. The new proposed fibers increase bond strength by 1.1 times for the same diameter of fibers. By creating fillet at the contact area between the rounded end and the fiber, bond strength is significantly improved, the maximum fiber capacity is reachable, and the pull-out occurs in the form of fracture and tearing of the fibers, which is the most desirable bonding mode for fibers. This also improves the energy absorbed by the fibers and is 4.4 times more than the corresponding straight fibers.

Drying Shrinkage of Ultra High Strength Steel-Fiber Reinforced Cementitious Composites (초고강도 강섬유 보강 시멘트 복합체의 건조수축에 관한 연구)

  • Kang, Su-Tae;Joh, Chang-Bin;Park, Jong-Sup;Ryu, Gum-Sung;Kim, Sung-Wook;Kim, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.737-740
    • /
    • 2008
  • When UHSFRC is applied to structures, it can be expected that it shows excellent performance in a point of constructability and load capacity. However, its rich mix can cause some problems concerning the long-term behavior such as shrinkage and creep. Therefore it is inevitably needed to investigate its long-term behavior in order to apply it to structures safely. This study is dealing with the drying shrinkage of UHSFRC. UHSFRC shows relatively fast drying shrinkage in the early exposed ages and slow moisture diffusion caused by compact microstructure of the material. It was found that The KCI model to predict the drying shrinkage did not properly represent these properties of UHSFRC. therefore a modified drying shrinkage model applicable to UHSFRC, which has different shrinkage properties from that of normal concrete, was proposed

  • PDF

A Study on Economically-Efficient Binder Combination of 80MPa Ultra High Strength Concrete (경제성을 고려한 80MPa급 초고강도 콘크리트의 결합재 조합에 대한 검토)

  • Park, Chun-Jin;Koh, Kyung-Teak;Ryu, Gum-Sung;Ahn, Gi-Hong;Ahn, Sang-Ku
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.64-71
    • /
    • 2015
  • Silica fume is generally adopted as admixture for Ultra High Strength Concrete (UHSC) owing to its remarkable contribution to the strength and durability but increases significantly the fabrication cost of UHSC. Accordingly, this study investigates the replacement of silica fume by blast furnace slag (BS) and fly ash (FA) in order to lower the fabrication cost of 80MPa-UHSC. To that goal, experiment is conducted on the mix proportions of mortar in terms of its binder combination, water-to-binder ratio (W/B) and unit binder content. Based on the experimental data, a mix design of concrete is derived and its properties are verified. The results reveal that a W/B of 21% and unit binder content of $720kg/m^3$ are appropriate to achieve 80MPa-UHSC using a binder composed of 60% of OPC, 30% of BS and 10% of FA. The properties of the corresponding UHSC are seen to be satisfactory with a slump flow of 715mm and compressive strength of 97MPa at 28days. The application of the binder combination derived in this study is analyzed to reduce the cost by 50% of binder compared to the mix using silica fume while realizing equivalent performance.

Steel-UHPC composite dowels' pull-out performance studies using machine learning algorithms

  • Zhihua Xiong;Zhuoxi Liang;Xuyao Liu;Markus Feldmann;Jiawen Li
    • Steel and Composite Structures
    • /
    • v.48 no.5
    • /
    • pp.531-545
    • /
    • 2023
  • Composite dowels are implemented as a powerful alternative to headed studs for the efficient combination of Ultra High-Performance Concrete (UHPC) with high-strength steel in novel composite structures. They are required to provide sufficient shear resistance and ensure the transmission of tensile forces in the composite connection in order to prevent lifting of the concrete slab. In this paper, the load bearing capacity of puzzle-shaped and clothoidal-shaped dowels encased in UHPC specimen were investigated based on validated experimental test data. Considering the influence of the embedment depth and the spacing width of shear dowels, the characteristics of UHPC square plate on the load bearing capacity of composite structure, 240 numeric models have been constructed and analyzed. Three artificial intelligence approaches have been implemented to learn the discipline from collected experimental data and then make prediction, which includes Artificial Neural Network-Particle Swarm Optimization (ANN-PSO), Adaptive Neuro-Fuzzy Inference System (ANFIS) and an Extreme Learning Machine (ELM). Among the factors, the embedment depth of composite dowel is proved to be the most influential parameter on the load bearing capacity. Furthermore, the results of the prediction models reveal that ELM is capable to achieve more accurate prediction.

Shrinkage and crack characteristics of filling materials for precast member joint under various restraint conditions

  • Lim, Dong-Kyu;Choi, Myoung-Sung
    • Advances in concrete construction
    • /
    • v.14 no.2
    • /
    • pp.139-151
    • /
    • 2022
  • Filling materials poured into precast member joint are subjected to restraint stress by the precast member and joint reinforcement. The induced stress will likely cause cracks at early ages and performance degradation of the entire structure. To prevent these issues and design reasonable joints, it is very important to analyze and evaluate the restrained shrinkage cracks of filling materials at various restraint conditions. In this study, a new time zero-that defines the shrinkage development time of a filling material-is proposed to calculate the accurate amount of shrinkage. The tensile stresses and strengths at different ages were compared through the ring test (AASHTO PP34) to evaluate the crack potential of the restrained filling materials at various restraint conditions. The mixture which contained an expansive additive and a shrinkage reducing agent exhibited high resistance to shrinkage cracking owing to the high-drying shrinkage compensation effect. The high-performance, fiber-reinforced cement composite, and ultra-high-performance, fiber-reinforced cement composite yielded very high resistance to shrinkage and cracking owing to the pull-out property of steel fibers. To this end, multiple nonlinear regression analyses were conducted based on the test results. Accordingly, a modified tensile stress equation that considered both the geometric shape of the specimen and the intrinsic properties of the material is proposed.

Machine Learning Based Strength Prediction of UHPC for Spatial Structures (대공간 구조물의 UHPC 적용을 위한 기계학습 기반 강도예측기법)

  • Lee, Seunghye;Lee, Jaehong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.111-121
    • /
    • 2020
  • There has been increasing interest in UHPC (Ultra-High Performance Concrete) materials in recent years. Owing to the superior mechanical properties and durability, the UHPC has been widely used for the design of various types of structures. In this paper, machine learning based compressive strength prediction methods of the UHPC are proposed. Various regression-based machine learning models were built to train dataset. For train and validation, 110 data samples collected from the literatures were used. Because the proportion between the compressive strength and its composition is a highly nonlinear, more advanced regression models are demanded to obtain better results. The complex relationship between mixture proportion and concrete compressive strength can be predicted by using the selected regression method.

Study on Properties of Dry Shrinkage according to Amount of Shrinkage Reduction Agent (수축저감제 혼입량에 따른 건조수축 특성 검토)

  • Seo, Tae Seok;Lee, Hyun Seung;Kim, Kang Min;Yoon, Seob
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.209-210
    • /
    • 2021
  • This study aims to develop ultra-low-shrinkage high-quality concrete. Therefore, the concrete drying shrinkage characteristics according to the type and amount of the shrinkage reducing agent were reviewed. As a result, the performance of Hexylene Glycol(HG) and Polyol was superior to that of PolyEthylene Glycol(PEG), which is most widely used in Korea. In addition, the shrinkage reduction effect was improved as the amount of PEG was increased, but the disadvantage of the strength reduction when excessive use was confirmed.

  • PDF

Finite Element Analysis of Ultra High Performance Fiber Reinforced Concrete 50M Composite Box Girder (초고강도 섬유보강 콘크리트 50M 합성 박스거더의 유한요소해석)

  • Makhbal, Tsas-Orgilmaa;Kim, Do-Hyun;Han, Sang-Mook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.100-107
    • /
    • 2018
  • The material and geometrical nonlinear finite elment analysis of UHPFRC 50M composite box girder was carried out. Constitute law in tension and compressive region of UHPFRC and HPC were modeled based on specimen test. The accuracy of nonlinear FEM analysis was verified by the experimental result of UHPFRC 50M composite girder. The UHPFRC 50M segmental composite box girder which has 1.5% steel fiber of volume fraction, 135MPa compressive strength and 18MPa tensile strength was tested. The post-tensioned UHPFRC composite girder consisted of three segment UHPFRC U-girder and High Strength Concrete reinforced slab. The parts of UHPFRC girder were modeled by 8nodes hexahedron elements and reinforcement bars and tendons were built by 2nodes linear elements by Midas FEA software. The constitutive laws of concrete materials were selected Multi-linear model both of tension and compression function under total strain crack model, which was included in classifying of smeared crack model. The nonlinearity of reinforcement elements and tendon was simulated by Von Mises criteria. The nonlinear static analysis was applied by incremental-iteration method with convergence criteria of Newton-Raphson. The validation of numerical analysis was verified by comparison with experimental result and numerical analysis result of load-deflection response, neutral axis coordinate change, and cracking pattern of girder. The load-deflection response was fitted very well with comparison to the experimental result. The finite element analysis is seen to satisfactorily predict flexural behavioral responses of post-tensioned, reinforced UHPFRC composite box girder.