• Title/Summary/Keyword: Ultra Wideband Filter(UWB)

Search Result 44, Processing Time 0.016 seconds

Differencing Multiuser Detection Using Error Feedback Filter for MIMO DS-UWB System in Nakagami Fading Channel

  • Kong, Zhengmin;Fang, Yanjun;Zhang, Yuxuan;Peng, Shixin;Zhu, Guangxi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2601-2619
    • /
    • 2012
  • A differencing multiuser detection (MUD) method is proposed for multiple-input multiple-output (MIMO) direct sequence (DS) ultra-wideband (UWB) system to cope with the multiple access interference (MAI) and the computational efficiency in Nakagami fading channel. The method, which combines a multiuser-interference-cancellation-based decision feedback equalizer using error feedback filter (MIC DFE-EFF), a coefficient optimization algorithm (COA) and a differencing algorithm (DA), is termed as MIC DFE-EFF (COA) with DA for short. In the paper, the proposed MUD method is illuminated from the rudimental MIC DFE-EFF to the advanced MIC DFE-EFF (COA) with DA step by step. Firstly, the MIC DFE-EFF system performance is analyzed by minimum mean square error criterion. Secondly, the COA is investigated for optimization of each filter coefficient. Finally, the DA is introduced to reduce the computational complexity while sacrificing little performance. Simulations show a significant performance gain can be achieved by using the MIC DFE-EFF (COA) with DA detector. The proposed MIC DFE-EFF (COA) with DA improves both bit error rate performance and computational efficiency relative to DFE, DFE-EFF, parallel interference cancellation (PIC), MIC DFE-EFF and MIC DFE-EFF with DA, though it sacrifices little system performance, compared with MIC DFE-EFF (COA) without DA.

A 0.13 ${\mu}m$ CMOS UWB RF Transmitter with an On-Chip T/R Switch

  • Kim, Chang-Wan;Duong, Quoc-Hoang;Lee, Seung-Sik;Lee, Sang-Gug
    • ETRI Journal
    • /
    • v.30 no.4
    • /
    • pp.526-534
    • /
    • 2008
  • This paper presents a fully integrated 0.13 ${\mu}m$ CMOS MB-OFDM UWB transmitter chain (mode 1). The proposed transmitter consists of a low-pass filter, a variable gain amplifier, a voltage-to-current converter, an I/Q up-mixer, a differential-to-single-ended converter, a driver amplifier, and a transmit/receive (T/R) switch. The proposed T/R switch shows an insertion loss of less than 1.5 dB and a Tx/Rx port isolation of more than 27 dB over a 3 GHz to 5 GHz frequency range. All RF/analog circuits have been designed to achieve high linearity and wide bandwidth. The proposed transmitter is implemented using IBM 0.13 ${\mu}m$ CMOS technology. The fabricated transmitter shows a -3 dB bandwidth of 550 MHz at each sub-band center frequency with gain flatness less than 1.5 dB. It also shows a power gain of 0.5 dB, a maximum output power level of 0 dBm, and output IP3 of +9.3 dBm. It consumes a total of 54 mA from a 1.5 V supply.

  • PDF

Design of UWB CMOS Low Noise Amplifier Using Inductor Peaking Technique (인덕터 피킹기법을 이용한 초광대역 CMOS 저잡음 증폭기 설계)

  • Sung, Young-Kyu;Yoon, Kyung-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.158-165
    • /
    • 2013
  • In this paper, a new circuit topology of an ultra-wideband (UWB) 3.1-10.6GHz CMOS low noise amplifier is presented. The proposed UWB low noise amplifier is designed utilizing RC feedback and LC filter networks which can provide good input impedance matching. In this design, the current-reused topology is adopted to reduce the power consumption and the inductor-peaking technique is applied for the purpose of bandwidth extension. The performance results of this UWB low noise amplifier simulated in $0.18-{\mu}m$ CMOS process technology exhibit a power gain of 14-14.9dB, an input matching of better than -10.8dB, gain flatness of 0.9dB, and a noise figure of 2.7-3.3dB in the frequency range of 3.1-10.6GHz. In addition, the input IP3 is -5dBm and the power consumption is 12.5mW.

Design of a CMOS LNA for MB-OFDM UWB Systems (MB-OFDM 방식의 UWB 시스템을 위한 CMOS LNA 설계)

  • Lee Jae-kyoung;Kang Ki-sub;Park Jong-tae;Yu Chong-gun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.117-122
    • /
    • 2006
  • A CMOS LNA based on a single-stage cascode configuration is designed for MB-OFDM ultra-wide band(UWB) systems. Wideband($3.1GHz\~4.9GHz$) input matching is performed using a simple bandpass filter to minimize the chip size and the noise figure degradation. The simulation results using $0.18{\mu}m$ CMOS process parameters show a power gain of 9.7dB, a 3dB band width of $2.1GHz\~7.1GHz$, a minimum NF of 2dB, an IIP3 of -2dBm. better than -11.8dB of input matching while occupying only $0.74mm^2$ of chip area. It consumes 25.8mW from a 1.8V supply.