• Title/Summary/Keyword: Ultra Short Pulse Laser

Search Result 27, Processing Time 0.029 seconds

Three stage amplification of Distributed Feedback Dye Laser (Distributed Feedback Dye Laser의 3단 증폭특성)

  • 이영우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.339-341
    • /
    • 2004
  • We obtained ultra-short single pulse with an energy of 80 of from self Q-switched Distributed Feedback Dye Laser. Using three stages of amplifiers constructed by two stages of dye amplifiers and one bethune cell amplifier, we obtained high power pulse and second harmonic generation with BBO in ultraviolet region.

  • PDF

Continuous variation characteristics of pulse width in short cavity dye laser (단공진기 색소레이저의 펄스폭 연속가변 특성)

  • 김용평
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.6
    • /
    • pp.512-517
    • /
    • 1999
  • Quenched dye laser (QDL), which operates with relaxation oscillation mode, is one of the most powerful source for ultra-short pulse light. In this paper, the output characteristics of QDL is theoretically analyzed by a computer simulation. The QDL is assumed that the laser dye is Rhodamine 6G which has the oscillation wavelength of 590 nrn and that the active length is 5 mm and that the pumping source is XeCllaser which has oscillation wavelength of 308 nm. It is revealed ilim the pulse width of short cavity dye laser reduced less than 1/100 than pumping pulse duration and has the linear relationship with spatial width of pumping beam approximately. In addition, it is revealed that the short cavity dye laser is a powerful candidate of pulse width variable light source, which is adjusted by spatial size of pumping beam_ beam_

  • PDF

Improvement of pulse characteristics of glass laser oscillator (글라스 레이저 발진기의 출력펄스특성의 개선에 관한 연구)

  • 강형부
    • 전기의세계
    • /
    • v.29 no.5
    • /
    • pp.321-328
    • /
    • 1980
  • The Q-switching oscillator of TE $M_{00}$ mode was constructed in order to improve the properties of energy focusing and amplification, and prevent laser materials from breakdown. The Q-switching was done by means of electro-optical effect using Glan prism and KDP Pockels cell. Sharp laser pulse of risetime-1 ns and variable pulse width 2-10 ns was obtained from Q-switching laser pulse by PTM method using a laser triggered spark gap (LTSG), Glan prism and Pockels cell. A single ultra-short pulse (picosec order in pulse width) was obtained from mode-locked pulse train in combination of a mode-locked oscillator using saturable dye cell with pulse shaping system using PTM method.d.

  • PDF

Construction and operational characteristics of a Ultra-Short pulse Cr4+:YAG laser (극초단 펄스 Cr4+:YAG 레이저의 제작 및 동작 특성)

  • Lee Bong Yeon;Lee Dong Han;Lee Chi Weon;Yoon Seok Beom;Choo Han Tae
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.5
    • /
    • pp.455-460
    • /
    • 2004
  • We have developed a mode-locked ultra-short pulse C $r^{4+}$:YAG laser, as well as a continuous wave C $r^{4+}$:YAG laser. The laser was pumped by a Nd:YAG laser and its characteristics were investigated. In continuous wave mode, we obtained as much as 600 mW at 1.436 ${\mu}{\textrm}{m}$ with pumping power of 6 W, by using an output coupler with a reflectivity of 98%. The power slope efficiency was 10%, when the gain medium was cooled to 19$^{\circ}C$. The tuning range was varied from 1.39 ${\mu}{\textrm}{m}$ to 1.55 ${\mu}{\textrm}{m}$ and the maximum power was 400 mW at 1.492 ${\mu}{\textrm}{m}$ with a 3-plate birefringent filter. The C $r^{4+}$:YAG laser was mode-locked by a Kerr lens mode locking method. Mode locking at 1.436 ${\mu}{\textrm}{m}$was initiated by slightly rocking a mirror mount. But the pulses were very unstable because of the strong water absorption at this region. So we shifted the lasing wavelength to 1.492 ${\mu}{\textrm}{m}$ by using a 3-plate birefringent filter. Then we obtained stable state mode-locking with the maximum average power of 280 mW for a pumping power of 6 W. The pulse width of 43 fs was measured using an autocorrelator and the repetition rate was 104.5 MHz.

Absolute Distance Measurement using Synthetic Wavelength of Femto-second Laser (펨토초 레이저의 합성파를 이용한 절대거리 측정)

  • Kim Yun-Seok;Jin Jong-Han;Joo Ki-Nam;Kim Seung-Woo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.569-572
    • /
    • 2005
  • Technological feasibility of using recently-available femtosecond ultra short pulse lasers for advanced precision length metrology is investigated with emphasis on absolute distance measurements with $10{\mu}m$ ??resolution over extensive ranges. The idea of using femtosecond lasers for the measurement of absolute distances is based on the fact that a short pulse train is a mode-locked combination of discrete monochromatic light components spanning a wide spectral bandwidth. The synthetic wavelength is created from the repetition frequency, $f_r$ of the femtosecond laser and for more precise resolution, higher-order harmonics of the repetition frequency may be selected as the synthetic wavelength by using appropriate electronic filters.

  • PDF

AFM-based nanofabrication with Femtosecond pulse laser radiation (원자간력 현미경(AFM)과 펨토초 펄스 레이저를 이용한 나노 형상 가공)

  • Kim Seung-Chul;Kim Seung-Woo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.149-150
    • /
    • 2006
  • We describe a novel method of scanning probe nanofabrication using a AFM(atomic force microscopy) tip with assistance of Femtosecond laser pulses to enhance fabrication capability. Illumination of the AFM tip with ultra-short light pulses induces a strong electric field between the tip and the metal surface, which allows removing metal atoms from the surface by means of field evaporation. Quantum simulation reveals that the field evaporation is triggered even en air when the induced electric field reaches the level of a few volts per angstrom, which is low enough to avoid unwanted thermal damages on most metal surfaces. For experimental validation, a Ti: sapphire Femtosecond pulse laser with 10 fs pulse duration at 800 nm center wavelength was used with a tip coated with gold to fabricate nanostructures on a thin film gold surface. Experimental results demonstrate that fine structures with critical dimensions less than ${\sim}10nm$ can be successfully made with precise control of the repetition rate of Femtosecond laser pulses.

  • PDF

Three-Temperature Modeling of Carrier-Phonon Interactions in Thin GaAs Film Structures Irradiated by Picosecond Pulse Lasers

  • Lee Seong-Hyuk;Lee Jung-Hee;Kang Kwan-Gu;Lee Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1292-1301
    • /
    • 2006
  • This article investigates numerically the carrier-phonon interactions in thin gallium arsenide (GaAs) film structures irradiated by subpicosecond laser pulses to figure out the role of several recombination processes on the energy transport during laser pulses and to examine the effects of laser fluences and pulses on non-equilibrium energy transfer characteristics in thin film structures. The self-consistent hydrodynamic equations derived from the Boltzmann transport equations are established for carriers and two different types of phonons, i.e., acoustic phonons and longitudinal optical (LO) phonons. From the results, it is found that the two-peak structure of carrier temperatures depends mainly on the pulse durations, laser fluences, and nonradiative recombination processes, two different phonons are in nonequilibrium state within such lagging times, and this lagging effect can be neglected for longer pulses. Finally, at the initial stage of laser irradiation, SRH recombination rates increases sufficiently because the abrupt increase in carrier number density no longer permits Auger recombination to be activated. For thin GaAs film structures, it is thus seen that Auger recombination is negligible even at high temperature during laser irradiation.

Characteristics of Fiber Laser Lap Welding of Pure Aluminum Multi-thin Plate (순수 알루미늄 다층 박판의 Fiber 레이저 겹치기 용접 특성)

  • Yang, Yun Seok;Park, Eun Kyeong;Lee, Ka Ram;Yoo, Young Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.9
    • /
    • pp.931-942
    • /
    • 2013
  • In this study, we analyzed and compared the ultrasonic welding with the laser welding for the pure aluminium thin plates in a series of secondary lithium-ion batteries which are currently being produced by the ultrasonic welding; and performed the experiment for the purpose of the preceding study to replace the ultrasonic welding method with the laser welding method. As a result, the weld width of ultrasonic welding was 5mm, but that of laser welding was about 1~1.5 mm. As a result of tension test, the tensile strength was high when the pulse duration hour was short at the low peak power, while the high tensile strength was achieved when the pulse duration hour was long at the high peak power. The value of tensile strength was higher in the ultrasonic welding while the laser welding showed a maximum 45% better result as for the welding width.