• Title/Summary/Keyword: Ultra Capacitor

Search Result 87, Processing Time 0.041 seconds

Development of Simulation Model for PEMFC Hybrid Excavator (연료전지 시스템을 적용한 하이브리드 굴삭기 해석 모델 개발)

  • Lee, Se Young
    • Journal of Drive and Control
    • /
    • v.16 no.3
    • /
    • pp.16-22
    • /
    • 2019
  • Due to the rise in energy consumption and natural resource prices, the demand to improve energy efficiency in the construction machine has been highlighted. Even though many researchers have contributed to the development of the technology, CO2 gas emissions of heavy machinery remains high. One of the most significant problems of the novel excavator with internal combustion engines is the emission of harmful gas. To reduce emissions in the construction machine, it is necessary to replace the internal combustion engines with the alternative one. To overcome those problems, this paper focuses on the adoption of PEMFC hybrid engine for the excavator system. An internal combustion engine is replaced by new structures with fuel cell, battery and ultra capacitor. The proposed system has been designed and modeled using Simcenter Amesim software and compared with the conventional one through simulation results.

Balancing System for Electric Double Layer Capacitor (전기이중층 캐패시터용 밸런싱 시스템)

  • Nam, Jong-ha;Jo, H.M;Park, J.G;Park, S.U;Kang, D.H;Kim, Y.S;Hwang, H.S
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.59-60
    • /
    • 2013
  • 슈퍼캐패시터(Super Capacitor) 또는 울트라 캐패시터(Ultra Capacitor) 등으로 불리우는 전기 이중층 캐패시터(EDLC, Electric Double Layer Capacitor)는 기존 콘덴서보다 월등한 용량 특성을 가지며, 전극과 전해질의 화학반응을 이용하던 이차전지들과 달리 주로 계면반응을 사용한 축전원리를 이용하여 높은 출력밀도와 충방전 효율, 무제한에 가까운 사이클 특성을 가지고 있다. 또한 전류변화에 안정적이어서 기존의 이차전지와는 달리 보호회로를 생략할 수 있기 때문에 단순한 회로 구성이 가능하고 전극활물질로서 탄소재를 사용하여 환경 친화적인 특성을 가진 차세대 에너지저장장치라고 할 수 있다. 특히 50만 사이클이라는 우수한 수명특성으로 인해 기존의 이차전지가 사용되기 어려운 다양한 분야에 적용이 늘어가고 있는 추세에 있다.

  • PDF

Improving Fuel Efficiency of a Hybrid Excavator (하이브리드 굴삭기 연비 개선 연구)

  • Cho, Sungwoo;Yoo, Seungjin;Park, Cheol-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.211-217
    • /
    • 2015
  • Emission gas regulations and constantly increasing fuel costs call for the worldwide use of environmentally friendly and energy-efficient machines in industry. To meet these requirements, a hybrid excavator prototype has been developed that incorporates an electric swing motor, engine assist motor, and ultra-capacitor module into a conventional hydraulic excavator of the 22-ton class. This paper mainly describes a few techniques to optimize its energy efficiency. These include 1) controlling the engine speed in proportion to the load torque, 2) controlling the pump displacement when driving the electric swing system, 3) managing the ultra-capacitor voltage to minimize the electrical energy loss, and 4) reducing the cooling fan speed to improve the energy efficiency of the system.

A Study on Reliability Test of Super-Capacitor for Electric Railway Regenerative Energy Storage System (전동차 회생에너지 저장 시스템용 슈퍼커패시터의 신뢰성시험에 관한 연구)

  • Lee, Sang-Min;Kim, Nam
    • Journal of Applied Reliability
    • /
    • v.16 no.3
    • /
    • pp.238-244
    • /
    • 2016
  • Purpose: Domestic electric railway Regenerative Energy Storage System seriously affects the maintenance cost of the total operating expenses of nearly 60% of the total LCC (Life Cycle Cost) due to high dependence on foreign Leading company. Therefore by developing the system, it is important to lower the maintenance cost in the domestic supply. This study about the capacitor Reliability test and the purpose of this study is development electric railway Regenerative Energy Storage System. Methods: In case of, having a close relation between the temperature and the reaction rate, Accelerated Model was known that according to Arrhenius' law of chemical activity. If you apply this formula in using allowable temperature range of the capacitor can induce the Arrhenius empirical formula used in much Manufacture Fields. We evaluate the capacitors Leading company through the Arrhenius model. in order to providing a base for the localization of Ultra Capacitor. Conclusion: In this paper, we conducted a reliability test. And it was performed by the accelerated life test and Cycle Test with temperature and C-rate. and then MTBF and B10 life are estimated by analyzing the accelerated life test result. This is thought to need detailed study applying complex stress than about whether it matches the actual behavior in electric railway.

Characteristics and electrochemical performance of Metal Oxide/MWNTs/nano-composites for ultra capacitor (울트라 커패시터용 Metal Oxide/MWNTs의 특성과 전기화학적 성능)

  • Shin, Jeong-Gyun;Park, Soo-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1365-1366
    • /
    • 2007
  • Cobalt oxide was composite with MWNT to attain cycle stable by chemical method. We have been considered CoOx is the ideal material for high energy density electrochemical capacitor due to pseudo capacitor reaction. In this study we found that decrease in resistance due to composite MWNT. Also CoOx/MWNT composite material have resulted larger capacitance and exhibits better electrochemical behavior. The structural feature was investigated by using SEM. The CoOx/MWNT composite is not only a promising ultracapacitor material for energy storages but also has a good possibility because of its great capacitive properties, simple preparation and low cost.

  • PDF

A Study on Optimization of Propulsion Systems for Series Hybrid Electric Vehicles Considering Mission Equipments (임무장비를 고려한 직렬형 하이브리드 차량의 추진시스템 최적화 연구)

  • Jang, Myeong-Eon;Kim, Sang-Man;Han, Kyu-Hong;Yeo, Seung-Tai
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.225-232
    • /
    • 2013
  • In this paper, the study was conducted on the subject of the hybrid electric vehicles used by the military, and optimized the propulsion system for fuel economy considering energy supply to the mission equipments. For the analysis of the vehicles, a method based on the geometry and some assumptions was applied with basic vehicle dynamics. The sources of energy supply in the military hybrid electric vehicles are an engine, a battery and an ultra-capacitor. The optimal operation point among an engine, a battery and an ultra-capacitor can be found by minimizing energy consumption of driving power train and mission equipments. In the study, it was possible to find the optimal propulsion system by comparing fuel efficiency of the vehicles during the driving cycle.

Compensation of the Secondary Voltage of a Three Winding Coupling Capacitor Voltage Transformer (3권선 CCVT의 2차 전압 보상 방법)

  • Kang, Yong-Cheol;Kim, Yeon-Hee;Zheng, Tai-Ying;Jang, Sung-Il;Kim, Yong-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.938-943
    • /
    • 2008
  • Coupling capacitor voltage transformers(CCVTs) have been used in extra or ultra high voltage systems to obtain the standard low voltage signal for protection and measurement. For fast suppression of the phenomenon of ferroresonance, three winding CCVTs are used instead of two winding CCVTs. A tuning reactor is connected between a capacitor voltage divider and a voltage transformer to reduce the phase angle difference between the primary and secondary voltages in the steady state. Slight distortion of the secondary voltage is generated when no fault occurs. However, when a fault occurs, the secondary voltage of the CCVT has significant errors due to the transient components such as dc offset component and/or high frequency components resulting from the fault. This paper proposes an algorithm for compensating the secondary voltage of a three winding CCVT in the time domain. With the values of the measured secondary voltage of the three winding CCVT, the secondary, tertiary and primary currents and voltages are estimated; then the voltages across the capacitor and the tuning reactor are calculated and then added to the measured voltage. Test results indicate that the algorithm can successfully compensate the distorted secondary voltage of the three winding CCVT irrespective of the fault distance, the fault impedance and the fault inception angle as well as in the steady state.

Compensation of the Secondary Voltage of a Coupling Capacitor Voltage Transformer (CCVT의 2차 전압 보상 방법)

  • Kang, Yong-Cheol;Zheng, Tai-Ying;Lee, Ji-Hoon;Jang, Sung-Il;Kim, Yong-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.909-914
    • /
    • 2008
  • A coupling capacitor voltage transformer(CCVT) is used in an extra or ultra high voltage system to obtain the standard low voltage signal for protection. To avoid the phase angle error between the primary and secondary voltages, a tuning reactor is connected between a capacitor and a voltage transformer. The inductance of the reactor is designed based on the power system frequency. If a fault occurs on the power system, the secondary voltage of the CCVT contains some errors due to a dc offset component and harmonic components resulting from the fault. The errors become severe in the case of a close-in fault. This paper proposes an algorithm for compensating the secondary voltage of a CCVT in the time-domain. From the measured secondary voltage of the CCVT, the secondary and primary currents are obtained; then the voltage across the capacitor and the inductor is calculated and then added to the measured secondary voltage to obtain the correct primary voltage. Test results indicate that the proposed algorithm can compensate the distorted secondary voltage of the CCVT irrespective of the fault distance, the fault inception angle, and the burden of the CCVT.

Compensation of the secondary voltage of a coupling capacitor voltage transformer in the time-domain (히스테리시스 특성을 고려한 CCVT 2차 전압 보상 방법)

  • Kang, Yong-Cheol;Zheng, Tai-Ying;Kim, Yeon-Hee;Jang, Sung-Il;Kim, Yong-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.266-267
    • /
    • 2006
  • A coupling capacitor voltage transformer (CCVT) is used in extra high voltage and ultra high voltage transmission systems to obtain the standard low voltage signal for protection and measurement. To obtain the high accuracy at the power system frequency, a tuning reactor is connected between a capacitor and a voltage transformer (VT). Thus, no distortion of the secondary voltage is generated when no fault occurs. However, when a fault occurs, the secondary voltage of the CCVT has some errors due to the transient components resulting from the fault. This paper proposes an algorithm for compensating the secondary voltage of the CCVT in the time domain. With the values of the secondary voltage of the CCVT, the secondary and the primary currents are obtained; then the voltage across the capacitor and the tuning reactoris calculated and then added to the measured secondary voltage. The proposed algorithm includes the effect of the non-linear characteristic of the VT and the influence of the ferro-resonance suppression circuit. Test results indicate that the algorithm can successfully compensate the distorted secondary voltage of the CCVT irrespective of the fault distance, the fault inception angle and the fault impedance.

  • PDF

Development of Optimum Parameters Sampling Program for Mica Capacitor Design (마이카 커패시터 설계를 위한 최적 파라미터 추출 프로그램 개발)

  • Kim, Jae-Wook;Ryu, Chang-Keun
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.194-199
    • /
    • 2009
  • In this study, ultra high-voltage (170kV AC), reliable 80pF mica capacitors for partial discharge system application were investigated. For capacitors design, Program was developed to sampling of series and parallel parameters. Mica was used as the dielectric of the capacitors. Using the conservative design rule, over 3 individual 50$\mu$m thick mica sheets with a size of 30mm$\times$35mm were used with lead foils to form a parallel capacitor element and 20 mica sheets were interleaved with lead foils to form a series stack of parallel capacitor element to meet the requirements of the capacitors. The dimension of the fabricated 80pF capacitor for 17kV AC were 90mm$\times$90mm. The high-frequency characteristics of the capacitance (C) and dissipation factor (D) of the developed capacitors were measured using a capacitance meter. The developed capacitor exhibited C of 79.5pF, had D of 0.001% over the frequency ranges of 150kHz to 50MHz, had a self-resonant frequency of 65MHz.

  • PDF