• Title/Summary/Keyword: Ultimate stress

Search Result 764, Processing Time 0.028 seconds

Bearing capacity of strip footings on unsaturated soils under combined loading using LEM

  • Afsharpour, Siavash;Payan, Meghdad;Chenari, Reza Jamshidi;Ahmadi, Hadi;Fathipour, Hessam
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.223-235
    • /
    • 2022
  • Bearing capacity of shallow foundations is often determined for either dry or saturated soils. In some occasions, foundations may be subjected to external loading which is inclined and/or eccentric. In this study, the ultimate bearing capacity of shallow foundations resting on partially saturated coarse-grained cohesionless and fine-grained cohesive soils subjected to a wide range of combined vertical (V) - horizontal (H) - moment (M) loadings is rigorously evaluated using the well-established limit equilibrium method. The unified effective stress approach as well as the suction stress concept is effectively adopted so as to simulate the behaviour of the underlying unsaturated soil medium. In order to obtain the bearing capacity, four equilibrium equations are solved by adopting Coulomb failure mechanism and Bishop effective stress concept and also considering a linear variation of the induced matric suction beneath the foundation. The general failure loci of the shallow foundations resting on unsaturated soils at different hydraulic conditions are presented in V - H - M spaces. The results indicate that the matric suction has a marked influence on the bearing capacity of shallow foundations. In addition, the effect of induced suction on the ultimate bearing capacity of obliquely-loaded foundations is more pronounced than that of the eccentrically-loaded footings.

The Epoxy-metal Interphase and Its Incidence on Practical Adhesion

  • Roche, Alain Andre;Aufray, Maelenn
    • Journal of Adhesion and Interface
    • /
    • v.4 no.2
    • /
    • pp.1-9
    • /
    • 2003
  • Epoxy-amine liquid prepolymers are extensively applied onto metallic substrates and cured to obtain painted materials or bonded joint structures. Overall performances of such systems depend on the created interphase between the organic layer and the substrate. When epoxy-amine liquid mixtures are applied onto more or less hydrated metallic oxide layer, concomitant amine chemical sorption and hydroxide dissolution appear lending to the chelate formation. As soon as the chelate concentration is higher than the solubility product, these species crystallize as sharp needles. Moreover, intrinsic and thermal residual stresses are developed within painted or bonded systems. When residual stresses are higher than the organic layer/substrate adhesion, buckling, blistering, debonding may occur leading to a catastrophic drop of system performances. Practical adhesion can be evaluated with either ultimate parameters (Fmax or Dmax) or the critical strain energy release rate, using the three point flexure test (ISO 14679-1997). We observe that, for the same system, the ultimate load decreases while residual stresses increase when the liquid/solid time increases. Ultimate loads and residual stresses depend on the metallic surface treatment. For these systems, the critical strain energy release rate which takes into account the residual stress profile and the Young's modulus gradient remains quite constant whatever the metallic surface treatment was. These variations will be discussed and correlate to the formation mechanisms of the interphase.

  • PDF

Ultimate Analysis of Prestressed Concrete Cable-Stayed Bridges (프리스트레스트 콘크리트 사장교의 극한해석)

  • Lee, Jae Seok;Kang, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.85-98
    • /
    • 1993
  • A method of analysis for the material and geometric nonlinear analysis of planar prestressed concrete cable-stayed bridges including the time-dependent effects due to load history, creep, shrinkage, aging of concrete and relaxation of prestress is described. The analysis procedure, based on the finite element method, is capable of predicting the response of these structures through elastic, cracking, inelastic and ultimate ranges. The nonlinear formulation for the description of motion is based on the updated Lagrangian approach. To account for the material nonlinearity, nonlinear stress-strain relationship and cracking of concrete, nonlinear stress-strain relationships of reinforcing steel, prestressing steel, and cable, including load reversal are given. Results from a numerical examples on ultimate analyses of cable-stayed bridges are presented to illustrate the analysis method.

  • PDF

Dynamic Deformation Behavior of Metal Matrix Composites Under Impact Loading (충격하중을 받는 금속복합재료의 동적변형거동에 관한 연구)

  • Kim, Moon-Saeng;Lee, Hyeon-Chul
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1772-1782
    • /
    • 1993
  • The characteristics of metal matrix composite under dynamic tension at high strain rates up to the order of $10^3/sec$ is studied by using newly developed apparatus. The composite material processed in this research is aluminum-alumina metal matrix composites, arid fabricated by compocasting with the fiber volume fraction from 5 to 20%. The whisker and matrix material used in this paper were ${\delta}-Al_2O_3$ and Al-6061, respectively. The mechanical tests performed in this research are low and high strain rate tensile test. At low strain-rate tensile test, the modulus of elasticity and the ultimate tensile strength of the composites were improved about 77 pct. and 55 pct., respectively comparing with the unreinforced materials. At strain-rate from $10^{-3}\;to\;10^3/s$, the effect of strain-rate on the modulus, ultimate strength, flow stress is determined. Also the effect of strain rate on the modulus, ultimate tensile strength, flow stress and elongation to failures were investigated.

Nonlinear Analysis of Compressive Flange Based on Folded Plate Theory (Folded Plate Theory에 의한 압축플랜지의 비선형 해석)

  • Jung, Soo-Hyung;Shim, Jae-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.169-178
    • /
    • 2008
  • Compressive flanges of steel box girder is designed based on the ultimate strength behavior of sub-panel which is enclosed with longitudinal stiffeners and transverse stiffeners on appropriate safety factor. However, it is rational that the ultimate strength is calculated considering the various factors such as number and stiffness of longitudinal stiffener, spacing of transverse stiffener, initial deformation and residual stress distribution. In this study, an analysis program based on Folded Plate theory is developed considering the geometric effects and the material nonlinearity. The analysis program is applicated to the steel box girder bridges which is really constructed in domestic.

Confinement coefficient of concrete-filled square stainless steel tubular stub columns

  • Ding, Fa-xing;Yin, Yi-xiang;Wang, Liping;Yu, Yujie;Luo, Liang;Yu, Zhi-wu
    • Steel and Composite Structures
    • /
    • v.30 no.4
    • /
    • pp.337-350
    • /
    • 2019
  • The objective of this paper is to investigate the confinement coefficient of concrete-filled square stainless steel tubular (CFSSST) stub columns under axial loading. A fine finite 3D solid element model was established, which utilized a constitutive model of stainless steel considering the strain-hardening characteristics and a triaxial plastic-damage constitutive model of concrete with features of the parameter certainty under axial compression. The finite element analysis results revealed that the increased ultimate bearing capacity of CFSSST stub columns compared with their carbon steel counterparts was mainly due to that the composite action of CFSSST stub columns is stronger than that of carbon steel counterparts. A further parametric study was carried out based on the verified model, and it was found that the stress contribution of the stainless steel tube is higher than the carbon steel tube. The stress nephogram was simplified reasonably in accordance with the limit state of core concrete and a theoretical formula was proposed to estimate the ultimate bearing capacity of square CFSSST stub columns using superposition method. The predicted results showed satisfactory agreement with both the experimental and FE results. Finally, the comparisons of the experimental and predicted results using the proposed formula and the existing codes were illustrated.

Investigation on Ultimate Strength of STS304L Stainless Steel Welded Connection with Base Metal Fracture Using Finite Element Analysis

  • Lee, HooChang;Kim, TaeSoo;Hwang, BoKyung;Cho, TaeJun
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1139-1152
    • /
    • 2018
  • Many studies on the application of stainless steels as structural materials in buildings and infra-structures have been performed thanks to superior characteristics of corrosion resistance, fire resistance and aesthetic appeal. Experimental investigation to estimate the ultimate strength and fracture mode of the fillet-welded connections of cold-formed austenitic stainless steel (STS304L) with better intergranular corrosion resistance than that of austenitic stainless steel, STS304 commonly used has carried out by authors. Specimens were fabricated to fail by base metal fracture not weld metal fracture with main variables of weld lengths according to loading direction. All specimens showed a block shear fracture mode. In this paper, finite element analysis model was developed to predict the ultimate behaviors of welded connection and its validity was verified through the comparison with test results. Since the block shear behavior of welded connection due to stress triaxiality and shear-lag effects is different from that of bolted connection, stress and strain distributions in the critical path of tensile and shear fracture section were investigated. Test and analysis strengths were compared with those by current design specifications such as AISC, EC3 and existing researcher's proposed equations. In addition, through parametric analysis with extended variables, the conditions of end distance and longitudinal weld length for block shear fracture and tensile fracture were suggested.

Demand Capacities of Rubber Bear ing for Seismic Isolated Building (고성능 적층고무 면진장치의 요구 성능)

  • Hwang, Kee-Tae;Rim, Jong-Man;Kim, Dong-Won
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.487-494
    • /
    • 2006
  • The ultimate capacities of a rubber bearing are defined by compressive stress, shear strain, and stabilized roster ing force. The experiments were conducted with parameters of shesr elasticity(G) and first shape factor(S1), second shape factor(S2) for rubber bearing. Considering with test results, the ultimate capacities were verified, and furthermore the influence of those parameters were clarified. Using test results stable deformation of rubber bearings for designing was proposed.

  • PDF

Mechanical properties of steel-CFRP composite specimen under uniaxial tension

  • Uriayer, Faris A.;Alam, Mehtab
    • Steel and Composite Structures
    • /
    • v.15 no.6
    • /
    • pp.659-677
    • /
    • 2013
  • This paper introduces new specimens of Steel-Carbon Fibre Reinforced Polymer composite developed in accordance with standard test method and definition for mechanical testing of steel (ASTM-A370). The main purpose of this research is to study the behaviour of steel-CFRP composite specimen under uniaxial tension to use it in beams in lieu of traditional steel bar reinforcement. Eighteen specimens were prepared and divided into six groups, depending upon the number of the layers of CFRP. Uniaxial tensile tests were conducted to determine yield strength and ultimate strength of specimens. Test results showed that the stress-strain curve of the composite specimen was bilinear prior to the fracture of CFRP laminate. The tested composite specimens displayed a large difference in strength with remarkable ductility. The ultimate load for Steel-Carbon Fibre Reinforced Polymer composite specimens was found using the model proposed by Wu et al. (2010) and nonlinear FE analysis. The ultimate loads obtained from FE analysis are found to be in good agreement with experimental ones. However, ultimate loads obtained applying Wu model are significantly different from experimental/FE ones. This suggested modification of Wu model. Modified Wu's model which gives a better estimate for the ultimate load of Steel-Carbon Fibre Reinforced Polymer (SCFRP) composite specimen is presented in this paper.

Nonlinear finite element modeling of FRP-wrapped UHPC columns

  • Guler, Soner;Copur, Alperen;Aydogan, Metin
    • Computers and Concrete
    • /
    • v.12 no.4
    • /
    • pp.413-429
    • /
    • 2013
  • The primary aim of this study is to develop a three dimensional finite element (FE) model to predict the axial stress-strain relationship and ultimate strength of the FRP-wrapped UHPC columns by comparing experimental results. The reliability of four selected confinement models and three design codes such as ACI-440, CSA-S806-02, and ISIS CANADA is also evaluated in terms of agreement with the experimental results. Totally 6 unconfined and 36 different types of the FRP-wrapped UHPC columns are tested under monotonic axial compression. The values of ultimate strengths of FRP-wrapped UHPC columns obtained from the experimental results are compared and verified with finite element (FE) analysis results and the design codes mentioned above. The concrete damage plasticity model (CDPM) in Abaqus is utilized to represent the confined behavior of the UHPC. The results indicate that agreement between the test results and the non-linear FE analysis results is highly satisfactory. The CSA-S806-02 design code is considered more reliable than the ACI-440 and the ISIS CANADA design codes to calculate the ultimate strength of the FRP-wrapped UHPC columns. None of the selected confinement models that are developed for FRP-wrapped low and normal strength concrete columns can safely predict the ultimate strength of FRP-wrapped UHPC columns.