• 제목/요약/키워드: Ultimate failure condition

검색결과 69건 처리시간 0.022초

CEL 기법을 이용한 유한 요소 해석에서 지반의 극한 파괴 상태 감지를 위한 정량적 물리량 기준 (A Quantitative Physical Parameter for Detection of Ultimate Failure State of Soil Using CEL Method in Finite Element Analysis)

  • 김성민;이주형;정영훈
    • 한국지반공학회논문집
    • /
    • 제34권12호
    • /
    • pp.59-69
    • /
    • 2018
  • 한계평형법 이론들을 사용하기 위해서는 극한 파괴 상태에서 나타나는 파괴 전단면을 찾아야 한다. 강도 감소법에서는 유한요소해석의 수치해가 일정 반복 횟수 이내에 수렴하지 못하는 시점을 극한 파괴 상태로 정의한다. 하지만 Coupled Eulerian-Lagrangian (CEL)기법을 유한요소해석에서 사용하면 극한 파괴 상태에 도달하여도 수치해의 비수렴 상황이 발생하지 않으므로 이러한 정의는 사용하기 어렵다. 본 연구에서는 CEL 기법을 이용한 유한요소해석에서 지반의 극한 파괴 상태를 감지할 수 있는 객관적인 물리량 기준을 제시하였다. 비배수 조건의 연약지반이 연속기초 하중을 받는 경우 극한 파괴 상태에 해당하는 이론적 하중에서 소성 소산 에너지의 변화속도가 민감하게 변화함을 찾을 수 있었다.

1축 및 2축 압축을 받는 고강도콘크리트 및 강섬유보강 고강도콘크리트의 거동 (Behavior of Plain and Steel Fiber Reinforced High Strengh Concrete Under Uniaxial and Biaxial Compression)

  • 임동환;박성환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.5-8
    • /
    • 2005
  • The purpose of this study is to investigate the mechanical characteristics of plain and steel fiber high strength concrete under uniaxial and biaxial loading condition. A number of plain and steel fiber high strength concrete cubes having 28 days compressive strength of 82.7Mpa (12,000psi) were made and tested. Four principal compression stress ratios, and four fiber concentrations were selected as major test variables. From test results, it is shown that confinement stress in minor stress direction has pronounced effect on the strength and deformational behavior. Both of the stiffness and ultimate strength of the plain and fiber high strength concrete increased. The maximum increase of ultimate strength occurred at biaxial stress ratio of 0.5 in the plain high strength concrete and the value were recorded 30 percent over than the strength under uniaxial condition. The failure modes of plain high strength concrete under uniaxial compression were shown as splitting type of failure but steel fiber concrete specimens under biaxial condition showed shear type failure.

  • PDF

단일 쇄석다짐말뚝의 지지력 특성과 주요 설계 파라미터에 관한 고찰 (The study on the Characteristics of Ultimate Bearing Capacity and Major Design Parameters for Single Stone Column)

  • 천병식;김원철;조양운
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.552-560
    • /
    • 2004
  • Stone column is a soil improvement method and can be applicable for loose sand or weak cohesive soil. Since the lack of sand in Korea, stone column seems one of the most adaptable approach for poor ground as a soil improvement method. However, this method was not studied for practical application. In this paper, the most effective design parameters for the being capacity of stone column were studied. The parametric study of major design factors for single stone column was carried out under the bulging and general shear failure condition, respectively. Especially, a test result of single stone column by static load was compared with the bearing capacity values of suggested formulas. The analysis result showed that the ultimate bearing capacity by the formula was much less than the measured value by the static load test. Especially, the result of the parametric study under general shear failure condition showed that the bearing capacity has apparent difference between each suggested formulas with the variation of the major design parameters. Therefore, the result of this study can be a suggestion which is applicable for the field test and the future research.

  • PDF

파손압력모델의 경계조건을 이용한 매설배관의 파손확률 평가 (Estimation of Failure Probability Using Boundary Conditions of Failure Pressure Model for Buried Pipelines)

  • 이억섭;김의상;김동혁
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.310-315
    • /
    • 2003
  • This paper presents the effect of boundary condition of failure pressure model for buried pipelines on failure prediction by using a failure probability model. The first order Taylor series expansion of the limit state function is used in order to estimate the probability of failure associated with various corrosion defects for long exposure periods in years. A failure pressure model based on a failure function composed of failure pressure and operation pressure is adopted for the assessment of pipeline failure. The effects of random variables such as defect depth, pipe diameter, defect length, fluid pressure, corrosion rate, material yield stress, material ultimate tensile strength and pipe thickness on the failure probability of the buried pipelines are systematically studied by using a failure probability model for the corrosion pipeline.

  • PDF

An Improved Analysis Model for the Ultimate Behavior of Unbonded Prestressed Concrete

  • 조태준;김명한
    • 한국공간구조학회논문집
    • /
    • 제17권4호
    • /
    • pp.149-157
    • /
    • 2017
  • An innovative analysis method is proposed in this paper for the determination of ultimate resistance of prestressed concrete beams. The proposed method can be applied to simply supported or continuous beams in a unified manner whether structure and external loads are symmetric or not. Through the iterative nonlinear strain compatibility solutions, this method can also be applied to the non-prismatic section/un-symmetrical composite structures under moving load. The conventional studies have used the failure criteria when the strain of concrete reaches 0.003. However compared with bonded case, the value of strain in the reinforcement is much smaller than bonded case, thus, unbonded prestressed cases show compressive failure mode. It is shown that the proposed method gives acceptable results within 5% error compared with the prior experimental results. It can be shown that the proposed method can reach the solution much faster than typical three-dimensional finite element analysis for the same problem. This method is applicable to the existing unbonded prestressed members where deterioration has occurred leading to the reduced ultimate resistance or safety. In all, the proposed procedure can be applied to the design and analysis of newly constructed structures, as well as the risk assessment of rehabilitated structures.

파이프 골조온실의 원주형 콘크리트 기초의 인발저항력에 관한 연구 (A Study on the Uplift Capacity of Cylindrical Concrete Foundations for Pipe-Framed Greenhouse)

  • 윤용철;윤충섭;서원명;강만호
    • 한국농공학회지
    • /
    • 제40권4호
    • /
    • pp.109-119
    • /
    • 1998
  • Recently pipe-framed greenhouses are widely constructed on domestic farm area. These greenhouses are extremely light-weighted structures and so are easily damaged under strong wind due to the lack of uplift resistance of foundation piles. This experiment was carried out by laboratory soil tank to investigate the displacement be haviors of cylindrical pile foundations according to the uplift loads. Tested soils were sampled from two different greenhouse areas. The treatment for each soil type are consisted of 3 different soil moisture conditions, 2 different soil depths, and 3 different soil compaction ratios. Each test was designed to be repeated 2 times and additional tests were carried out when needed. The results are summarized as follows : 1. When the soil moisture content are low and/or pile foundations are buried relatively shallow, ultimate uplift capacity of foundation soil was generated just after begining of uplift displacement. But under the high moisture conditions and/or deeply buried depth, ultimate up-lift capacity of foundation soil was generated before the begining of uplift displacement. 2. For the case of soil S$_1$, the ultimate uplift capacity of piles depending on moisture contents was found to be highest in optimum moisture condition and in the order of air dryed and saturated moisture contents. But for the case of soil S$_2$, the ultimate uplift capacity was found to be highest in optimum moisture condition and in the order of saturated and air dryed moisture contents. 3. Ultimate uplift capacities are varied depending on the pile foundation soil moisture conditions. Under the conditions of optimum soil moisture contents with 60cm soil depth, the ultimate uplift capacity of pile foundation in compaction ratio of 80%, 85%, and 90% for soil 51 are 76kg, 115kg, and 155kg, respectively, and for soil S$_2$are 36kg, 60kg, and 92kg, respectively. But considering that typical greenhouse uplift failure be occurred under saturnted soil moisture content which prevails during high wind storm accompanying heavy rain, pile foundation is required to be designed under the soil condition of saturated moisture content. 4. Approximated safe wind velosities estimated for soil sample S$_1$and S$_2$are 32.92m/s and 26.58m/s respectively under the optimum soil condition of 90% compaction ratio and optimum moisture content. But considering the uplift failure pattern under saturated moisture contents which are typical situations of high wind accompanying heavy rain, the safe wind velosities for soil sample S$_1$and S$_2$are not any higher than 20.33m/s and 22.69m/s respectively.

  • PDF

작은 충돌손상을 가진 보강판의 최종강도 해석 (Ultimate Strength Analysis of Stiffened Plate with Minor Collision Damage)

  • 이탁기;임채환
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.226-229
    • /
    • 2006
  • The safety of on-going ships is one of important concerns in the view of environment and human life. The ship in bad condition is likely to be subjected to accidental loads such as collision. Once she has one or several minor collision damages in the form of circle or ellipse, her ultimate strength under compression or tension load will be reduced. Here, it is important to evaluate the reduction ratio of ultimate strength due to the damage from safety point of view. The problem of strength reduction of a plate with cutout such as opening hole has been treated by many researchers. As a result, a closed-form formula on the reduction of ultimate strength of a plate considering the effect of several forms of cutout was suggested. However, the structure of ships is composed of a plate and a stiffener so-called a stiffened plate, and it is likely to be damaged at a plate and stiffeners together in collision. This paper is to investigate the effect of minor collision damage on ultimate strength of a stiffened plate by using numerical analysis. For this study, the shape of minor collision damage of a stiffened plate was made by using contact algorithm. The deformed shape was used as an initial shape for ultimate stress analysis. Then, a series of nonlinear FE analysis was conducted to investigate the reduction effects of ultimate strength of the stiffened plate. The boundary condition was applied as simply supported at all boundaries, and the tripping of stiffener among failure mode under compression loading was neglected. These results were settled in the form of reduction ratio between ultimate of original intact stiffened plate and that of damaged stiffened plate.

  • PDF

정재하시험 결과를 통한 타입말뚝 지지력 공식의 타당성 분석 (A Study on the Applicability of Bearing Capacity Formulas of Driven Pile by Comparison with the Results of Static Loading Tests)

  • 천병식;이승범
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.544-551
    • /
    • 2004
  • Piles are structural elements made of steel, concrete or timber, and utilize as pile foundation which is one of deep foundations. Driven pile among them, which drives pile into the ground, is fast-constructable, less expensive and it supplies much bearing capacity. For these reasons, its demand is steady. In this study, by selecting the cases which reached ultimate failure during in-situ static loading tests, bearing capacities acquired from these tests were compared with those computed by existing theories and formula. As the results of the analysis, ultimate bearing capacity computed by theoretic formula were less or similar to those of test results in most cases, but lower ground water level and more dense layer where end of piles were reached remarkably high bearing capacity in theoretical methods. ${\beta}-method$ and Korean structure foundation design standard were sensitive to ground physical properties. Meyerhof metbod and API code were relatively independent from site condition.

  • PDF

철도노반 긴급복구를 위한 토목섬유 컨테이너의 파괴형태 분석 (Analysis of Failure Mode of Geotextile Container for Urgent Rehabilitation of Railroad Bed)

  • 신은철;이명호;이준철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(I)
    • /
    • pp.608-613
    • /
    • 2002
  • This study was under taken as an analysis of failure mode in a railroad bed reconstructed with miniaturized Geotextile Container after being destroyed by heavy rain. It assesses the practical use of the bag shaped Geotextile Container method in the rehabilitation of destroyed roadbeds. The failure mode was assessed using the laboratory model tests to determine the following criteria: Strain of Geotextile Container, Vertical & Horizontal displacements of Geotextile Container layer, and the transmitting load effects due to the applied load. The Geotextile Container layer was failed as a Block Failure type, although there was some variation in the results between the saturated and unsaturated conditions. The main failure was caused by the reduction of the interface friction between Geotextile Containers. The result of this mobilizes the significant horizontal displacement and the ultimate failure of the Geotextile Container layer. The strain on the wet Geotextile Container was occurred about two times greater than that of dry condition.

  • PDF

Experimental and analytical studies on one-way concrete slabs reinforced with GFRP molded gratings

  • Mehrdad, Shokrieh Mahmood;Mohammad, Heidari-Rarani
    • Steel and Composite Structures
    • /
    • 제9권6호
    • /
    • pp.569-584
    • /
    • 2009
  • Corrosion of steel rebars in bridge decks which are faced to harsh conditions, is a common problem in construction industries due to the porosity of concrete. In this research, the behavior of one-way concrete slabs reinforced with Glass fiber reinforced polymer (GFRP) molded grating is investigated both theoretically and experimentally. In the analytical method, a closed-form solution for load-deflection behavior of a slab under four-point bending condition is developed by considering a concrete slab as an orthotropic plate and defining stiffness coefficients in principal directions. The available formulation for concrete reinforced with steel is expanded for concrete reinforced with GFRP molded grating to predict ultimate failure load. In finite element modeling, an exact nonlinear behavior of concrete along with a 3-D failure criterion for cracking and crushing are considered in order to estimate the ultimate failure load and the initial cracking load. Eight concrete slabs reinforced with steel and GFRP grating in various thicknesses are also tested to verify the results. The obtained results from the models and experiments are relatively satisfactory.