• Title/Summary/Keyword: Ultimate failure

Search Result 992, Processing Time 0.027 seconds

Refined 3-Dimensional Strut-Tie Models for Analysis and Design of Reinforced Concrete Pile Caps (철근콘크리트 파일캡의 해석 및 설계를 위한 개선 3차원 스트럿-타이 모델)

  • Kim, Byung Hun;Chae, Hyun Soo;Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.115-130
    • /
    • 2013
  • The sectional methods of current design codes have been broadly used for the design of various kinds of reinforced concrete pile caps. Lately, the strut-tie model approach of current design codes also became one of the attracting methods for pile caps. However, since the sectional methods and the strut-tie model approach of current design codes have been established by considering the behaviors of structural concrete without D-regions and two-dimensional concrete structures with D-regions, respectively, it is inappropriate to apply the methods to the pile caps dominated by 3-dimensional structural behavior with disturbed stress regions. In this study, the refined 3-dimensional strut-tie models, which consider the strength characteristics of 3-dimensional concrete struts and nodal zones and the load-carrying capacity of concrete ties in tension regions, are proposed for the rational analysis and design of pile caps. To examine the validity of the proposed models and to verify the necessity of appropriate constituent elements for describing 3-dimensional structural behavior and load-transfer mechanism of pile caps, the ultimate strength of 78 reinforced concrete pile caps tested to failure was examined by the proposed models along with the sectional and strut-tie model methods of current design codes.

Shear Capacity of Reinforced Concrete Continuous T-Beams Externally Strengthened with Wire Rope Units (와이어로프로 외부 보강된 철근콘크리트 연속 T형 보의 전단내력)

  • Yang, Keun-Hyeok;Sim, Jae-Il;Byun, Hang-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.773-783
    • /
    • 2007
  • A simple unbonded-type shear strengthening technique for reinforced concrete beams using wire rope units is developed. Six two-span continuous T-beams externally strengthened with wire rope units and an unstrengthened control beam were tested. The main variables investigated were the amount and prestressing force of wire rope units. All specimens had the same geometrical dimension and arrangement of internal reinforcement. Influence of the distribution of vertical stresses in beam web owing to the prestressing force of wire rope units on the diagonal shear cracking load and the ultimate shear capacity of beams tested is presented. Based on the current study, it can be concluded that the amount and initial prestress of wire rope should be limited to be above 2.5 times the minimum shear reinforcement ratio specified in ACI 318-05 and below 0.6 times its own tensile strength, respectively, to ensure the enhancement of shear capacity and ductile failure mode of the strengthened beams. A numerical analysis based on the upper-bound theorem is developed to assess the shear capacity of continuous T-beams strengthened with wire rope units. From the comparisons of measured and predicted shear capacities, a better agreement is achieved in the proposed numerical analysis than in empirical equations recommended by ACI 318-05.

Experimental Study on the Cracking Loads of LB-DECKs with Varied Cross-Section Details (단면 상세가 변화된 LB-DECK의 균열하중에 대한 실험적 연구)

  • Youn, Seok-Goo;Cho, Gyu-Dae
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.657-665
    • /
    • 2011
  • LB-DECK, a precast concrete panel type, is a permanent concrete deck form used as a formwork for cast-in-place concrete pouring at bridge construction site. LB-DECK consists of 60 mm thick concrete slab and 125 mm height Lattice-girders partly embedded in the concrete slab. These decks have been applied to the bridges, which girder spacings are short enough to resist longitudinal cracking caused by construction loads. This paper presents experimental research work conducted to evaluate the cracking load of LB-DECKs designed for long span bridge decks. Twenty four non-composite beams and four composite beams are fabricated considering three design variables of thickness of concrete slab, height of lattice-girder, and diameter of top-bar. Static loads controlled by displacements are applied to test beams to obtain cracking and ultimate loads. Vertical displacements at the center of beams, strains of top-bar, crack propagation in concrete slab, and final failure modes are carefully monitored. The obtained cracking loads are compared to the analytical results obtained by elastic analyses. Long-term analyses using age-adjusted effective modulus method (AEMM) are also conducted to investigate the effects of concrete shrinkage on the cracking loads. Based on the test results, the tensile strength and the design details of LB-DECKs are discussed to prevent longitudinal cracking of long span bridge decks.

Fatigue Behavior of Prestressed Concrete Beams Using FRP Tendons (FRP 긴장재를 이용한 프리스트레스트 콘크리트 보의 피로 거동)

  • Kim, Kyoung-Nam;Park, Sang-Yeol;Kim, Chang-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.135-144
    • /
    • 2011
  • Recently, researches about fiber reinforced polymer (FRP) which has excellent durability, corrosion resistance, and tensile strength as a substitution material to steel tendon have been actively pursued. This study is performed to examine FRP tendon used prestressed beam's safety under service load. The specimen was a prestressed concrete beam with internal bonded FRP tendon. In order to compare the member fatigue capacity, a control specimen of a prestressed concrete beam with ordinary steel tendon was tested. A fatigue load was applied at a load range of 60%, 70%, and 80% of the 40% ultimate load, which was obtained though a static test. The fatigue load was applied as a 1~3 Hz sine wave with 4 point loading setup. Fatigue load with maximum 1 million cycles was applied. The specimen applied with a load ranging between 40~60% did not show a fatigue failure until 1 million cycles. However, it was found that horizontal cracks in the direction of tendons were found and bond force between the tendon and concrete was degraded as the load cycles increased. This fatigue study showed that the prestressed concrete beam using FRP tendon was safe under a fatigue load within a service load range. Fatigue strength of the specimen with FRP and steel tendon after 1 million cycles was 69.2% and 59.8% of the prestressed concrete beam's static strength, respectively.

An Evaluation of In-situ the Pullout Resistance of Chain Reinforcement (체인 보강재의 현장 인발저항력 평가)

  • Kim, Sang-Su;Yu, Chan;Lee, Bong-Jik;Shin, Bang-Woong
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.339-347
    • /
    • 2002
  • An in-situ experiment was performed to evaluate the pullout resistance capacity of chains which is used as a reinforcement of reinforced earth wall. It was also considered that chain was combined with a bar or L-type steel angle by the transverse reinforcement member in the experiment. About 80 pullout tests were peformed with varying the lengths of chain(2.0m, 2.5m, and 3.0m), the combination of each transverse members(chain only, chain+bar, or chain+angle), and the vertical placement of reinforcements. In the case that uses a chain only and a chain combined with bar, the maximum displacement was about 150mm and load continuously increased to the ultimate tensile strength of chain, and then tension failure of chains occurred. But in the case of a chain combined with angle, the displacement decreased to about 100mm and so it was expected that this combination can constrain the displacement of chain. On the other hand, comparing the yielding pullout load measured in the field to that calculated by theoretical equation, it is shown that measured values are 1.2~3.0 times greater than those of calculated values according to the length of chain, normal vertical stress, and the combination of chain with transverse members. However, the difference in the increment of yielding pullout load between bar and angle is not clear but it appears almost the same increment. It is expected that chain can be safely used as reinforcements of reinforced earth wall, although a theoretical estimation of the pullout resistance capability of chain is too conservative.

The Influence of Surface Treatments on Shear Bond Strength between Zirconia Core and Heat Press Ceramic Interface (지르코니아 코어의 표면처리방법이 열 가압 세라믹과의 전단결합강도에 미치는 영향)

  • Park, Hang-Min;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.31 no.2
    • /
    • pp.23-30
    • /
    • 2009
  • All-ceramic restorations have gained acceptance among clinicians and patients because of their superior esthetics. Most all-ceramic systems have a 2-layer structure, using a weak veneering ceramic over a strong supporting core. often, failure of all-ceramic restorations occurs when the veneering ceramic fractures, exposing the core material. The purpose of this study was to compare the shear bond strength of heat press ceramic system (Zirpress) to zirconia core with various surface treatments. 10 metal cores and 50 zirconia cores were fabricated and divided into six groups according to surface treatment such as Zirliner application, aluminium oxide blasting, and 9.5% HF etching. Sixty specimens were prepared using Zirpress, veneered 8mm height and 3mm in diameter, over the zirconia cores (n=10). The shear bond strength test was performed in a universal testing machine with a crosshead speed of 1/min. Ultimate shear bond strength data were analyzed with One-way ANOVA and the Scheffe's test (p=.05). Within the limits of this study, the following conclusions were drawn: The mean shear bond strengths (MPa) were: 12.93 for $110{\mu}m$ aluminium oxide blasting/Rexillium III/IPS e.Max Zirpress; 14.92 for $50{\mu}m$ aluminium oxide blasting ${\pm}9.5%$ HF etching/Zirconis core/IPS e.Max Zirpress; 16.37 for $110{\mu}$ aluminium oxide blasting + 9.5% HF etching/Zirconis core/IPS e.Max Zirpress; 12.89 for $200{\mu}$ aluminium oxide blasting + 9.5% HF etching/Zirconis core/IPS e.Max Zirpress; 19.30 for 9.5% HF etching/Zirconis core/IPS e.Max Zirpress; 19.55 for Zirliner/Zirconis core/IPS e.Max Zirpress. The mean shear bond strength for ZNTZH (Zirliner/Zirconis core) and ZNTEH (9.5% HF etching/Zirconis core) were significantly superior to MS110H ($110{\mu}$ aluminium oxide blasting/Rexillium III) and ZS200EH ($200{\mu}$ aluminium oxide blasting + 9.5% HF etching/Zirconis core) (p<0.05).

  • PDF

Using GA based Input Selection Method for Artificial Neural Network Modeling Application to Bankruptcy Prediction (유전자 알고리즘을 활용한 인공신경망 모형 최적입력변수의 선정: 부도예측 모형을 중심으로)

  • 홍승현;신경식
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.1
    • /
    • pp.227-249
    • /
    • 2003
  • Prediction of corporate failure using past financial data is a well-documented topic. Early studies of bankruptcy prediction used statistical techniques such as multiple discriminant analysis, logit and probit. Recently, however, numerous studies have demonstrated that artificial intelligence such as neural networks can be an alternative methodology for classification problems to which traditional statistical methods have long been applied. In building neural network model, the selection of independent and dependent variables should be approached with great care and should be treated as model construction process. Irrespective of the efficiency of a teaming procedure in terms of convergence, generalization and stability, the ultimate performance of the estimator will depend on the relevance of the selected input variables and the quality of the data used. Approaches developed in statistical methods such as correlation analysis and stepwise selection method are often very useful. These methods, however, may not be the optimal ones for the development of neural network model. In this paper, we propose a genetic algorithms approach to find an optimal or near optimal input variables fur neural network modeling. The proposed approach is demonstrated by applications to bankruptcy prediction modeling. Our experimental results show that this approach increases overall classification accuracy rate significantly.

  • PDF

Evaluation of Shear Design Provisions for Reinforced Concrete Beams and Prestressed Concrete Beams (철근콘크리트 보와 프리스트레스트 콘크리트 보의 전단설계기준에 대한 고찰)

  • Kim Kang-Su;Kim Sang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.717-726
    • /
    • 2005
  • Shear test data have been extracted from previous experimental research and compiled into a database that may be the largest ever made. In this paper, the shear database (SDB) was used for evaluating shear design provisions for both reinforced concrete (RC) beams and prestressd concrete (PSC) beams. A discussion on the use of the results of this evaluation related to calibration and strength reduction factor for the shear design provisions was also provided. It was observed that the shear design provisions did not provide good predictions for RC members and gave very poor predictions especially for RC members without shear reinforcement. On the other hand, the limit on shear strength contributed by transverse reinforcement was observed to be lower than necessary. The shear design provisions gave very unconservative results for the large RC members (d>700mm) without shear reinforcement having light amount of longitudinal reinforcement $(\rho_w<1.0\%)$. However, for PSC members the shear design provisions gave a good estimation of ultimate shear strength with a reasonable margin of safety. Despite of a large difference of accuracy in prediction of shear strength for RC members and PSC members, the shear design provisions used a same shear strength reduction factor for these members. As a result, the shear design provisions did not provide a uniform factor of safety against shear failure for different types of members.

Development of Short-span Precast Concrete Panels for Railway Bridge (철도교용 단지간 프리캐스트 콘크리트패널의 개발)

  • Seol, Dae-Ho;Lee, Kyoung-Chan;Kim, Ki-Hyun;Youn, Seok-Goo
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.545-553
    • /
    • 2016
  • This paper presents experimental static test results of the precast concrete panels developed for short-span concrete bridge deck form. Different from LB-DECK, concrete rib attached to the bottom surface of concrete panel, and Top-bar is not used at the top surface of concrete panel. Number of concrete ribs and cross-section details of concrete rib are determined from the analytical results of parametric study considering the span length and the thickness of concrete bridge decks. Shear rebars are installed at the top surface of concrete panel for composite action between precast concrete panel and cast-in-place concrete. In order to evaluate the safety and the serviceability of the developed short-span concrete panel subjected to design load, static load test is conducted. Three test panels with span length of 1.6m are fabricated, and during the load test displacements, strains and cracks of test panels are measured and final failure modes are investigated. Serviceability of the test panels is evaluated based on the results of displacements, cracking load, and crack width at the design load level. Safety is also evaluated based on the comparison of the ultimate strength and the factored design load of test panels. Based on the test results, it is confirmed the short-span precast concrete panel satisfies the serviceability and safety regulated in design codes. In addition, the range of span length of concrete bridge decks for the short-span concrete panel is discussed.

Ebaluation of Ultimate Stress of Unbonded Tendon in Prestressed Concrete Members(I)-Considereateon of ACI code and the State-of -the Art- (프리스트레스트 콘크리트 부재에서 비부착 긴장재의 극한응력 평가에 관한 연구(I)-기존연구 및 ACI 규준식의 고찰-)

  • 임재형;문정호;음성우;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.4
    • /
    • pp.167-176
    • /
    • 1997
  • The current study is a part of series of research about the evaluation method of the unbonded tendon stress in prestressed concrete member at flexural failure. As the first part. previous design equations were examined in oder to find whether any modifications may be needed. A total of 167 experimental results tested for more than 40 years were gathered to build D/B and then previous proposed and codified equations were evaluated with the experimental relsults. The ACI Code equation and Naaman, Harajli, and Chakrabarti's equations were chosen for the purpose of examination. Then, the followings were obtained from the analytical examination. It is desirable to compute the tendon stress with the member analysis method instead of the sectional analysis method which has been used in the current ACI Code. The tendon stress may also be influenced significantly by the amount of ordinary bonded reinforcements and the loading types. And the current ACI Code overestimated the effect of span/depth ratio. As results, it was concluded that the revision of the ACi Code equation should be considered positively. Then, a new design has to be proposed with the reasonable and comprehensive investigation about influential factors on the tendon stress variation.