• 제목/요약/키워드: Ultimate bending capacity

검색결과 113건 처리시간 0.017초

축력의 영향을 고려한 숏크리트-강지보 합성 라이닝의 비선형 거동 분석 (Analysis of Nonlinear Behaviors of Shotcrete-Steel Support Lining Considering the Axial Force Effects)

  • 유지환;김정수;김문겸
    • 대한토목학회논문집
    • /
    • 제37권2호
    • /
    • pp.357-367
    • /
    • 2017
  • 강지보로 보강된 터널 숏크리트 라이닝은 그 기하학적 형태로 인해 외부하중이 작용됨에 따라 휨 모멘트와 축력이 동시에 발생하게 된다. 숏크리트는 축력 수준에 따라 휨 강성이 달라지며, 이로 인한 심한 비선형 거동을 보인다. 또한 강지보 유형에 따라 역학적으로 상이한 지보 성능을 가진다. 본 연구에서는 화이버 단면 요소(fiber section element)를 이용해 압축력과 휨 모멘트를 동시에 받는 강지보-숏크리트 라이닝의 비선형합성거동을 평가할 수 있는 수치모델을 제시하였고, 이를 활용해 강지보 유형에 따른 합성지보 성능을 수치적으로 분석하였다. 또한, 지반-구조물 상호작용을 구현하기 위해 지반의 연화(softening) 거동을 고려하여 수정된 hyperbolic 모델을 제시하였다. 제시된 수치모델은 기존 아치형 실험체의 하중실험 결과와 해석결과를 비교하여 검증하였으며, 수치해석을 통해 강지보 유형에 따른 라이닝의 합성거동을 분석하였다. 해석결과를 통해, 복철근 형태의 강지보가 기존 H형강과 유사한 극한 하중 지지력을 가지는 것을 확인하였다. 또한 강재량 증가가 잔류 지지력 향상에 크게 기여하였으며, 지보재 주변의 지반강성이 증가함에 따라 강지보 유형에 따른 최대 하중지지력 개선 효과는 작아짐을 확인하였다.

강연선과 폴리머 모르타르에 의해 보수보강된 슬래브의 휨거동에 대한 실험적 고찰 (An Experimental Study on the Flexural Behavior of Slab Repaired and Reinforced with Strand and Polymer Mortar)

  • 양동석;황정호;박선규
    • 콘크리트학회논문집
    • /
    • 제17권2호
    • /
    • pp.171-177
    • /
    • 2005
  • 철근콘크리트 구조물은 시간이 경과함에 따라 외력의 증가나 환경의 변화 등에 의하여 노후화되고 그 기능을 상실하게 된다. 이러한 구조물의 기능을 회복하기 위하여 보수$\cdot$보강 공법이 적용되고 있다. 본 연구에서는 이러한 보수$\cdot$보강 공법 중프리스트레싱 공법과 단면증설 공법의 특성을 도입한 강연선과 폴리머 모르타르에 의한 보수$\cdot$보강 공법이 적용된 슬래브의 휨 거동특성을 통해 기존 구조물의 보수$\cdot$보강 효과를 파악하였다. 실험은 강연선의 직경, 모르타르의 종류, 치핑 여부, 모르타르 두께, 강연선의 간격 등의 실험변수에 따라 1방향 슬래브 10개, 2방향 슬래브 4개의 시험체를 제작하여 수행하였다. 실험결과 강연선의 간격이 감소할수록 보강효과가 증가하였고, 치핑을 한 경우 콘크리트와 모르타르의 계면에서의 균열이 극한하중 이후에서 발생하였다.

Wind load and wind-induced effect of the large wind turbine tower-blade system considering blade yaw and interference

  • Ke, S.T.;Wang, X.H.;Ge, Y.J.
    • Wind and Structures
    • /
    • 제28권2호
    • /
    • pp.71-87
    • /
    • 2019
  • The yaw and interference effects of blades affect aerodynamic performance of large wind turbine system significantly, thus influencing wind-induced response and stability performance of the tower-blade system. In this study, the 5MW wind turbine which was developed by Nanjing University of Aeronautics and Astronautics (NUAA) was chosen as the research object. Large eddy simulation on flow field and aerodynamics of its wind turbine system with different yaw angles($0^{\circ}$, $5^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$ and $45^{\circ}$) under the most unfavorable blade position was carried out. Results were compared with codes and measurement results at home and abroad, which verified validity of large eddy simulation. On this basis, effects of yaw angle on average wind pressure, fluctuating wind pressure, lift coefficient, resistance coefficient,streaming and wake characteristics on different interference zone of tower of wind turbine were analyzed. Next, the blade-cabin-tower-foundation integrated coupling model of the large wind turbine was constructed based on finite element method. Dynamic characteristics, wind-induced response and stability performance of the wind turbine structural system under different yaw angle were analyzed systematically. Research results demonstrate that with the increase of yaw angle, the maximum negative pressure and extreme negative pressure of the significant interference zone of the tower present a V-shaped variation trend, whereas the layer resistance coefficient increases gradually. By contrast, the maximum negative pressure, extreme negative pressure and layer resistance coefficient of the non-interference zone remain basically same. Effects of streaming and wake weaken gradually. When the yaw angle increases to $45^{\circ}$, aerodynamic force of the tower is close with that when there's no blade yaw and interference. As the height of significant interference zone increases, layer resistance coefficient decreases firstly and then increases under different yaw angles. Maximum means and mean square error (MSE) of radial displacement under different yaw angles all occur at circumferential $0^{\circ}$ and $180^{\circ}$ of the tower. The maximum bending moment at tower bottom is at circumferential $20^{\circ}$. When the yaw angle is $0^{\circ}$, the maximum downwind displacement responses of different blades are higher than 2.7 m. With the increase of yaw angle, MSEs of radial displacement at tower top, downwind displacement of blades, internal force at blade roots all decrease gradually, while the critical wind speed decreases firstly and then increases and finally decreases. The comprehensive analysis shows that the worst aerodynamic performance and wind-induced response of the wind turbine system are achieved when the yaw angle is $0^{\circ}$, whereas the worst stability performance and ultimate bearing capacity are achieved when the yaw angle is $45^{\circ}$.