• Title/Summary/Keyword: Ultimate bearing load

Search Result 249, Processing Time 0.022 seconds

FEM-based modelling of stabilized fibrous peat by end-bearing cement deep mixing columns

  • Dehghanbanadaki, Ali;Motamedi, Shervin;Ahmad, Kamarudin
    • Geomechanics and Engineering
    • /
    • v.20 no.1
    • /
    • pp.75-86
    • /
    • 2020
  • This study aims to simulate the stabilization process of fibrous peat samples using end-bearing Cement Deep Mixing (CDM) columns by three area improvement ratios of 13.1% (TS-2), 19.6% (TS-3) and 26.2% (TS-3). It also focuses on the determination of approximate stress distribution between CDM columns and untreated fibrous peat soil. First, fibrous peat samples were mechanically stabilized using CDM columns of different area improvement ratio. Further, the ultimate bearing capacity of a rectangular foundation rested on the stabilized peat was calculated in stress-controlled condition. Then, this process was simulated via a FEM-based model using Plaxis 3-D foundation and the numerical modelling results were compared with experimental findings. In the numerical modelling stage, the behaviour of fibrous peat was simulated based on hardening soil (HS) model and Mohr-Coulomb (MC) model, while embedded pile element was utilized for CDM columns. The results indicated that in case of untreated peat HS model could predict the behaviour of fibrous peat better than MC model. The comparison between experimental and numerical investigations showed that the stress distribution between soil (S) and CDM columns (C) were 81%C-19%S (TS-2), 83%C-17%S (TS-3) and 89%C-11%S (TS-4), respectively. This implies that when the area improvement ratio is increased, the share of the CDM columns from final load was increased. Finally, the calculated bearing capacity factors were compared with results on the account of empirical design methods.

A Study on the Behavior Characteristics of Large Deep Foundations (대형 깊은 기초의 지지거동 특성에 관한 연구)

  • Park, Choon-Sik;Jung, Kwang-Min
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.83-91
    • /
    • 2020
  • In this study, the characteristics of support behavior according to the change of ground condition of the cast-in-place pile and the large Caisson foundation, which are increasingly used as foundations of large structures and bridges. the allowable bearing capacity calculated using the yield load analysis method was analyzed to calculate similar allowable bearing capacity for each method. In addition, the allowable bearing capacity calculated by the ultimate load analysis method was found to have a large difference in bearing capacity for each method. Through this point, it can be usefully used as an empirical formula for evaluating the settlement characteristics of piles in future design and construction. In addition, as a result of examining the ground force distribution during sedimentation of large caissons, the section of the weathered rock layer showed almost constant ground force distribution as ground forces decreased after yield occurred at the base corner. And in the bed rock layer section, the foundation's center was transformed into a ground force in the form of a convex downward due to an increase in the ground resistance of the central part. Using these results, the theory previously presented by Fang (1991) and Kőgler (1936) was proved.

The new criterion on performance-based design and application to recent earthquake codes

  • Azer A. Kasimzade;Emin Nematli;Mehmet Kuruoglu
    • Earthquakes and Structures
    • /
    • v.24 no.1
    • /
    • pp.11-20
    • /
    • 2023
  • "Performance-based design (PBD)" is based on designing a structure with choosing a performance target under design criteria to increase the structure's resistance against earthquake effect. The plastic hinge formation is determined as one of the fundamental data in finite elements nonlinear analysis to distinguish the condition of the structure where more significant potential damage could occur. If the number of plastic hinges in the structure is increased, the total horizontal load capability of the structure is increased, also. Theoretically, when the number of plastic hinges of the plane frame structure reaches "the degree of hyperstaticity plus one", the structure will reach the capability of the largest ultimate horizontal load. As the number of plastic hinges to be formed in the structure increases towards the theoretical plastic hinge number (TPHN), the total horizontal load capability of the structure increases, proportionally. In the previous studies of the authors, the features of examining the new performance criteria were revealed and it was formulated as follows "Increase the total number of plastic hinges to be formed in the structure to the number of theoretical plastic hinges as much as possible and keep the structure below its targeted performance with related codes". With this new performance criterion, it has been shown that the total lateral load capability of the building is higher than the total lateral load capability obtained with the traditional PBD method by the FEMA 440 and FEMA 356 design guides. In this study, PBD analysis results of structures with frame carrier systems are presented in the light of the Turkey Building Earthquake Code 2019. As a result of this study, it has been shown that the load capability of the structure in the examples of structures with frame carrier system increases by using this new performance criterion presented, compared to the results of the examination with the traditional PBD method in TBEC 2019.

Bearing Capacity of Shallow Foundation on a Finite Layer of Sandy Ground Underlain by a Rigid Base (강성저면위 유한한 두께의 모래지반에 놓인 얕은기초의 지지력)

  • Jun, Sang-Hyun;Yoo, Nam-Jae;Yoo, Kun-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.6
    • /
    • pp.39-48
    • /
    • 2011
  • In this paper the method of estimating the bearing capacity of shallow foundation on a finite layer of sandy ground underlain by a rigid base was proposed by assessing results of the model test and the numerical analyses. For model experiments, the centrifuge tests under 1g and 20 g of gravitational levels were performed with sandy soils sampled from the field, changing the relative density of sandy soil and the ratio of thickness of sand layer (H) to the width of strip footing (B). As results of tests, bearing capacity tends to increase with the value of H/B while settlement for a given load intensity decreases. Bearing capacity also increases with relative density of the soil. In order to propose the method of estimating the bearing capacity of thin sandy layer underlain by a rigid base, values of bearing capacity factors from test results were compared with the values of modified bearing capacity factor by Mandel & Salencon (1972) considering the effect of H/B value on bearing capacity. The relation of bearing capacity factor ratio, normalizing friction angle of sandy soil, with the value of H/B was suggested so that this relation could be applied to design in the safe side. The results of numerical analyses obrained by changing the layout of footing, relative density of sandy soil and the value of H/B, were in good agreements with the suggested relation.

Evaluation of Vertical Bearing Capacity for Bucket and Shallow Foundations Installed in Sand (사질토 지반에 설치된 버킷기초 및 얕은기초의 수직지지력 산정)

  • Park, Jeongseon;Park, Duhee;Jee, Sunghyun;Kim, Dongjoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.9
    • /
    • pp.33-41
    • /
    • 2015
  • The vertical bearing capacity of a bucket foundation installed in sand can be calculated as sum of the skin friction and end bearing capacity. However, the current design equations are not considering the non-associated flow characteristics of sand and the reduction in the skin friction and increase in the end bearing capacity when the vertical load is applied. In this study, we perform two-dimensional axisymmetric finite element analyses following non-associated flow rule and calculate the vertical bearing capacity of circular bucket foundation of various sizes installed in sand of different friction angles. After calculating the skin friction and end bearing force at the ultimate state, design equations are derived for each. The skin friction of bucket foundation is shown significantly small compared to the end bearing capacity. Considering the difference with the available design equation for piles, it is recommended that the equation for piles is used for the bucket foundation. A new shape-depth factor ($s_q{\cdot}d_q$) for bucket foundation is recommended which also accounts for the increment of the end bearing capacity due to skin friction. Additionally, the shape and depth factor of embedded foundation proposed from the associated flow rule can overestimate the bearing capacity in sand, so it is more adequate to use the shape-depth factor proposed in this study.

Axial Behavior of Non-Displacement Tapered Piles in Sand (모래지반에서 비배토 테이퍼말뚝의 연직거동 특성)

  • Paik, Kyu-Ho;Lee, Jun-Hwan;Kim, Dae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.35-45
    • /
    • 2007
  • It is known that the response of piles is affected by the shape of pile as well as soil conditions. In order to investigate the characteristics of the axial responses and bearing capacities of non-displacement tapered and cylindrical piles in sands, 12 model pile load tests using a calibration chamber were conducted on model tapered and cylindrical piles, which were specially manufactured to measure the base and shaft load capacities independently. Results of the model tests showed that the shaft load of tapered piles continuously increased with pile settlement, whereas the shaft load of cylindrical piles reached ultimate values at a settlement equal to 4% of pile diameter. Therefore, taper piles have greater shaft loads than cylindrical one at the same settlement. It is also observed that the total load capacity of tapered piles is lower than cylindrical piles for dense sand but is greater than that of cylindrical piles for medium sand. The ultimate unit base resistance of tapered piles was greater than that of cylindrical piles for lateral earth pressure ratio greater than 0.4, and the shaft resistance was greater than that of cylindrical piles irrespective of lateral earth pressure ratio.

Experimental study on shear capacity of SRC joints with different arrangement and sizes of cross-shaped steel in column

  • Wang, Qiuwei;Shi, Qingxuan;Tian, Hehe
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.267-287
    • /
    • 2016
  • The seismic performance of the ordinary steel reinforced concrete (SRC) columns has no significant improvement compared to the reinforced concrete (RC) columns mainly because I, H or core cross-shaped steel cannot provide sufficient confinement for core concrete. Two improved SRC columns by constructing with new-type shaped steel were put forward on this background, and they were named as enlarging cross-shaped steel and diagonal cross-shaped steel for short. The seismic behavior and carrying capacity of new-type SRC columns have been researched theoretically and experimentally, while the shear behavior remains unclear when the new-type columns are joined onto SRC beams. This paper presents an experimental study to investigate the shear capacity of new-type SRC joints. For this purpose, four new-type and one ordinary SRC joints under low reversed cyclic loading were tested, and the failure patterns, load-displacement hysteretic curves, joint shear deformation and steel strain were also observed. The ultimate shear force of joint specimens was calculated according to the beam-end counterforce, and effects of steel shape, load angel and structural measures on shear capacity of joints were analyzed. The test results indicate that: (1) the new-type SRC joints display shear failure pattern and has higher shear capacity than the ordinary one; (2) the oblique specimens have good bearing capacity if designed reasonably; and (3) the two proposed construction measures have little effect on the shear capacity of SRC joints embedded with diagonal cross-shaped steel. Based on the mechanism observed from the test, the formulas for calculating ultimate shear capacity considering the main factors (steel web, stirrup and axial compression ratio) were derived, and the calculated results agreed well with the experimental and simulated data.

Case Study of Comparative Analysis between Static and Dynamic Loading Test of PHC Pile (굴착 후 타입된 PHC 말뚝의 재하시험 결과 비교분석 사례 연구)

  • Kim, Jaehong;Yea, Geuguwen
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.11
    • /
    • pp.13-23
    • /
    • 2013
  • In the west coastal soft ground, the static and dynamic loading tests for PHC piles which were executed using light driving without injecting cement milk were carried out and the correlation was analyzed. Initial dynamic loading test used hydraulic hammer(ram weight 70kN) and final average penetration effect presented 3.0 to 8.0mm at 0.8m drop. Then final allowable bearing capacity using CAPWAP presented 776.4 to 1,053.6kN a pile. The static loading tests which were performed at the other piles loaded 200% of the design load dividing by eight phases. As the result, total settlement was 15.97 to 16.38mm and residual settlement was 4.48 to 5.38mm, but both yielding and ultimate load can't be estimated. Therefore, allowable bearing capacity was determined larger than 1,200kN a pile regarding maximum test load as yielding load. Thus, it showed that allowable bearing capacity of the dynamic loading test was larger than static loading test in 1.54 to 1.14 times.

Behaviour of cold-formed steel concrete infilled RHS connections and frames

  • Angeline Prabhavathy, R.;Samuel Knight, G.M.
    • Steel and Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.71-85
    • /
    • 2006
  • This paper presents the results of a series of tests carried out on cold-formed steel rectangular hollow and concrete infilled beam to column connections and frames. A stub column was chosen such that overall buckling does not influence the connection behaviour. The beam chosen was a short-span cantilever with a concentrated load applied at the free end. The beam was connected to the columns along the strong and weak axes of columns and these connections were tested to failure. Twelve experiments were conducted on cold-formed steel direct welded tubular beam to column connections and twelve experiments on connections with concrete infilled column subjected to monotonic loading. In all the experiments conducted, the stiffness of the connection, the ductility characteristics and the moment rotation behaviour were studied. The dominant mode of failure in hollow section connections was chord face yielding and not weld failure. Provision of concrete infill increases the stiffness and the ultimate moment carrying capacity substantially, irrespective of the axis of loading of the column. Weld failure and bearing failure due to transverse compression occurred in connections with concrete infilled columns. Six single-bay two storied frames both with and without concrete infill, and columns loaded along the major and minor axes were tested to failure. Concentrated load was applied at the midspan of first floor beam. The change in behaviour of the frame due to provision of infill in the column and in the entire frame was compared with hollow frames. Failure of the weld at the junction of the beam occurred for frames with infilled columns. Design expressions are suggested for the yielding of the column face in hollow sections and bearing failure in infilled columns which closely predicted the experimental failure loads.

Tension Creep Model of Recycled PET Polymer Concrete with Flexural Loading (휨 하중을 받는 재생 PET 폴리머 콘크리트의 인장크리프 모델)

  • Chae, Young-Suk;Tae, Ghi-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.117-125
    • /
    • 2012
  • In recent years, polymer concrete based on polyester resin have been widely generalized and the research of polymer concrete have been actively pursued by the technical innovations. Polymer concrete is a composite consisting of aggregates and an organic resin binder that hardens by polymerization. Polymer concrete are stronger by a factor of three or more in compression, a factor of four to six in tension and flexural and a factor of two in impact when compared with portland cement concrete. In view of the growing use of polymer concrete, it is important to study the physical characteristics of the material, emphasizing the short term properties as well as long term mechanical behavior. If polymer concrete is to be used in flexural load-bearing application such as in beam, it is imperative to understand the deformation of the material under sustained loading conditions. This study is proposed to empirical and mechanical model of polymer concrete tension creep using long-term experimental results and mathematical development. The test results showed that proposed model has been used successfully to predict creep deformations at a stress level that was 20 percent of the ultimate strength and viscoelastic behavior of recycled-PET polymer concrete is linear of stress level up to 30 percent. It is expected that the present model allows more realistic evaluation of varying stresses in polymer concrete structures with a constant loading.