• Title/Summary/Keyword: Ultimate Pressure

Search Result 269, Processing Time 0.023 seconds

Estimation of Ultimate Lateral Load Capacity Using CPT Results Considering Lateral Soil Pressure Distribution (수평토압분포를 고려한 CPT 기반의 말뚝극한수평지지력 산정)

  • Kim, Min-Kee;Kyung, Doo-Hyun;Hong, Jung-Moo;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.2
    • /
    • pp.37-44
    • /
    • 2009
  • In this study, estimation methodology for the pile of ultimation lateral resistance, pu, and ultimate lateral capacity, Pu, is based on the CPT cone resistance $q_c$. Preexistent methodologies for ultimate lateral resistance and ultimate lateral capacity have been generally represented with relative density, vertical effective stresses, and various $K_0$ values which are important for analyzing sandy soil. These methodologies, however, did not consider the horizontal effective stress and the effects of construction site conditions. Therefore, CPT-based methodology for the estimation of the ultimate lateral pile load capacity Hu was proposed. Calibration chamber test results were analyzed and compared with calculated results. The proposed estimation methodology for the pile of $p_u$ can be effectively utilized as alternative to preexistent methods.

Nonlinear behavior of R/C cooling tower shells

  • Hara, Takashi;Kato, Shiro;Ohya, Makoto
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.541-552
    • /
    • 1997
  • In this paper the ultimate strength of the R/C cooling towers, which have initial imperfection and pre-cracked elements, is analyzed. The initial geometric imperfections arise from the unavoidable inaccuracies under the construction and the pre-cracks are assumed to be produced by the temperature stress gradients or cyclic loading under wind pressure and/or earthquake load. Both effects are strongly influenced on the strength of the R/C cooling tower shell structures. The reinforcing ratio is also the important factor to evaluate the ultimate strength of the R/C cooling tower shells. However we could not analyze these structures experimentally because of their large, analyses are the powerful schemes to evaluate the safety and reliability of these structures. The analyzed model is Port Gibson cooling tower shell. In the numerical analysis the geometric and material nonlinearities are taken into account.

Strength and strain enhancements of concrete columns confined with FRP sheets

  • Campione, G.;Miraglia, N.;Papia, M.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.6
    • /
    • pp.769-790
    • /
    • 2004
  • The compressive behavior up to failure of short concrete members reinforced with fiber reinforced plastic (FRP) is investigated. Rectangular cross-sections are analysed by means of a simplified elastic model, able also to explain stress-concentration. The model allows one to evaluate the equivalent uniform confining pressure in ultimate conditions referred to the effective confined cross-section and to the effective stresses in FRP along the sides of section; consequently, it makes it possible to determine ultimate strain and the related bearing capacity of the confined member corresponding to FRP failure. The effect of local reinforcements constitute by single strips applied at corners before the continuous wrapping and the effect of round corners are also considered. Analytical results are compared to experimental values available in the literature.

An Experimental Study on the Effect of Performance for Channel of Disk-type Drag Pump Rotors (원판형 드래그펌프 회전자의 채널이 성능에 미치는 영향에 관한 실험적 연구)

  • Kwon, Myoung-Keun;Lee, Soo-Young;Hwang, Young-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1703-1708
    • /
    • 2004
  • In this study, we are investigated experimentally the pumping characteristics about the pumping channel shapes of disk-type drag pump (DTDP). We are experimented the pumping performance about the rotors which have channel or do not exist. The channel disk-type rotor has spiral channels both upper and lower part, and stator is planar. The planar disk-type rotor hasn't channel and stator has spiral channels both upper and lower part. The flow-meter method is adopted to calculate the pumping speed. Compression ratio and pumping speeds for the nitrogen gas are measured under the inlet pressure range of 0.001 ${\sim}$ 4 Torr. The maximum of compression ratio was about 3300 for three-stage DTDP (channel disk-type rotor), 1000 for four-stage (planar disk-type rotor) and two-stage DTDP (channel disk-type rotor) at zero throughput. The ultimate pressure was $1.6{\times}10^{-6}$ Torr for three-stage DTDP (channel disk-type rotor), $2.5{\times}10^{-6}$ Torr for four-stage DTDP (planar disk-type rotor).

  • PDF

Experimental investigation and design method of the general anchorage zone in the ring beam of prestressed concrete containment vessels

  • Chang Wu;Tao Chen;Yanli Su;Tianyun Lan;Shaoping Meng
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.485-497
    • /
    • 2024
  • Ring beam is the main anchorage zone of the tendons in the nuclear power prestressed concrete containment vessel (PCCV). Its safety is crucial and has a great influence on the overall performance of PCCV. In this paper, two half-scale ring beams were tested to investigate the mechanical performance of the anchorage zone in the PCCV under multidirectional pressure. The effect of working condition with different tension sequences was investigated. Additionally, a half axisymmetric plane model of the containment was established by the finite element simulation to further predict the experimental responses and propose the local reinforcement design in the anchorage zone of the ring beam. The results showed that the ultimate load of the specimens under both working conditions was greater than the nominal ultimate tensile force. The original reinforcement design could meet the bearing capacity requirements, but there was still room for optimization. The ring beam was generally under pressure in the anchorage area, while the splitting force appeared in the under-anchor area, and the spalling force appeared in the corner area of the tooth block, which could be targeted for local strengthening design.

Estimation of buckling and collapse behaviour for continuous stiffened plate under combined transverse axial compression and lateral pressure (조합하중을 받는 연속보강판의 좌굴 및 붕괴거동 평가)

  • Park, Joo-Shin;Choi, Joung-Hwan;Hong, Kwan-Young;Lee, Gyoung-Woo
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.27-33
    • /
    • 2009
  • Estimation of the buckling and ultimate strength of a continuous stiffened plate subjected to combined transverse compression and lateral pressure is of high importance to ensure the safety of ship structures, particularly for the bottom plating under a deep draft condition For example, bottom plating of bulk carriers is subjected to transverse thrust caused by the bending of double bottom structure and the direct action of pressure on the side shells. Most of experimental tests, theoretical approach and numerical researches have been performed on the buckling and ultimate strength behaviour of plates or stiffened plates under combined compression and lateral pressure. With regard to stiffened panels, however, most of studies have been concerned with the load conditions of combined longitudinal thrust and lateral pressure, while fewer studies have been performed for the combined transverse thrust and lateral pressure. In addition, the previous researches are mainly concerned with an isolated rectangular plate simply supported along the all edges, whereas actual ship plating is continuous across the transverse frames and heavy girders. In the present paper, a series of elastoplastic large deflection FEA on a continuous stiffened plate is performed and then clarify the characteristic of collapse mode and explain the effect of transverse compression.

A Study on the Buckling and Ultimate Strength for Cylindrically curved plate subject to combined load (조합하중을 받는 원통형 곡판구조의 좌굴 및 최종강도 거동에 관한 연구)

  • Oh, Young-Cheol;Ko, Jae-Yong;Lee, Kyoung-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.25-26
    • /
    • 2007
  • Ship are typically thin-walled structures and consists of stiffened plate structure by purpose of required design load and weight reduction etc. Also, a hull structural characteristics are often used in structures with curvature at deck plating with camber, side shell plating at fore and aft parts and bilge circle parts, It have been believed that these structures can be modelled fundamentally by a part of cylinder. Structural component with curvature subjected to combined loading regimes and complex boundary conditions, which can potentially collapse due to buckling. Hence, for more rational and safe design of ship structures, it is crucial importance to better understand the interaction relationship of the buckling and ultimate strength for cylindrically curved plate under these load components. In this study, the ultimate strength characteristic of curved plate under combined load(lateral pressure load + axial compressive load) are investigated through using FEM series analysis with varying geometric panel properties.

  • PDF

A Study on the Behaviour Mechanism of Jacket Anchor (자켓앵커 거동특성에 관한 연구)

  • Kim, Dong-Hee;Kim, In-Chul;Kong, Hyun-Seok;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1240-1249
    • /
    • 2008
  • Jacket anchor was developed to increase the pullout resistance of general ground anchor in soft ground, and the mechanism of pullout resistance of jacket anchor was analyzed. Also, the ultimate bond stress of jacket anchor was estimated by ultimate resistance which is determined by field tests. Grout milk was injected into the jacket to make grout bulb of jacket anchor. The formation of grout bulb of jacket anchor increases the diameter of grout bulb, ground strength and confining pressure between anchor grout and soil. From the twelve field test results, it was observed that the pullout resistance of jacket anchor is 15.38~295.02%(average 83.53%) greater than that of general ground anchor, and plastic deformation of jacket anchor is 20.78~1,496.45%(average 288.78%) smaller than that of general ground anchor at the same load cycle. Especially, it was investigated that the increase of ultimate resistance over 200% and the reduction of plastic deformation over 600% was obtained in gravel layer. It means that the jacket anchor is superior to the general ground anchor in gravel layer. Finally, the ultimate bond stress was proposed to design jacket anchor.

  • PDF

Prediction of ultimate load capacity of concrete-filled steel tube columns using multivariate adaptive regression splines (MARS)

  • Avci-Karatas, Cigdem
    • Steel and Composite Structures
    • /
    • v.33 no.4
    • /
    • pp.583-594
    • /
    • 2019
  • In the areas highly exposed to earthquakes, concrete-filled steel tube columns (CFSTCs) are known to provide superior structural aspects such as (i) high strength for good seismic performance (ii) high ductility (iii) enhanced energy absorption (iv) confining pressure to concrete, (v) high section modulus, etc. Numerous studies were reported on behavior of CFSTCs under axial compression loadings. This paper presents an analytical model to predict ultimate load capacity of CFSTCs with circular sections under axial load by using multivariate adaptive regression splines (MARS). MARS is a nonlinear and non-parametric regression methodology. After careful study of literature, 150 comprehensive experimental data presented in the previous studies were examined to prepare a data set and the dependent variables such as geometrical and mechanical properties of circular CFST system have been identified. Basically, MARS model establishes a relation between predictors and dependent variables. Separate regression lines can be formed through the concept of divide and conquers strategy. About 70% of the consolidated data has been used for development of model and the rest of the data has been used for validation of the model. Proper care has been taken such that the input data consists of all ranges of variables. From the studies, it is noted that the predicted ultimate axial load capacity of CFSTCs is found to match with the corresponding experimental observations of literature.

Estimation of Failure Probability Using Boundary Conditions of Failure Pressure Model for Buried Pipelines (파손압력모델의 경계조건을 이용한 매설배관의 파손확률 평가)

  • Lee, Ouk-Sub;Kim, Eui-Sang;Kim, Dong-Hyeok
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.310-315
    • /
    • 2003
  • This paper presents the effect of boundary condition of failure pressure model for buried pipelines on failure prediction by using a failure probability model. The first order Taylor series expansion of the limit state function is used in order to estimate the probability of failure associated with various corrosion defects for long exposure periods in years. A failure pressure model based on a failure function composed of failure pressure and operation pressure is adopted for the assessment of pipeline failure. The effects of random variables such as defect depth, pipe diameter, defect length, fluid pressure, corrosion rate, material yield stress, material ultimate tensile strength and pipe thickness on the failure probability of the buried pipelines are systematically studied by using a failure probability model for the corrosion pipeline.

  • PDF