• Title/Summary/Keyword: Ubiquitin-specific protease 14

Search Result 3, Processing Time 0.02 seconds

USP14 inhibition regulates tumorigenesis by inducing apoptosis in gastric cancer

  • Mi Yea Lee;Min-Jee Kim;Jun-O Jin;Peter Chang-Whan Lee
    • BMB Reports
    • /
    • v.56 no.8
    • /
    • pp.451-456
    • /
    • 2023
  • Deubiquitinases (DUBs) are an essential component of the ubiquitin-proteasome system (UPS). They trim ubiquitin from substrate proteins, thereby preventing them from degradation, and modulate different cellular processes. Ubiquitin-specific protease 14 (USP14) is a DUB that has mainly been studied for its role in tumorigenesis in several cancers. In the present study, we found that the protein levels of USP14 were remarkably higher in gastric cancer tissues than in the adjacent normal tissues. We also demonstrated that the inhibition of USP14 activity using IU1 (an USP14 inhibitor) or the inhibition of USP14 expression using USP14-specific siRNA markedly reduced the viability of gastric cancer cells and suppressed their migratory and invasive abilities. The reduction in gastric cancer cell proliferation due to the inhibition of USP14 activity was a result of the increase in the degree of apoptosis, as evidenced by the increased expression levels of cleaved caspase-3 and cleaved PARP. Furthermore, an experiment using the USP14 inhibitor IU1 revealed that the inhibition of USP14 activity suppressed 5-fluorouracil (5-FU) resistance in GC cells. Collectively, these findings indicate that USP14 plays critical roles in gastric cancer progression and suggest its potential to serve as a novel therapeutic target for gastric cancer treatment.

Interaction of GAT1 with Ubiquitin-Specific Protease Usp14 in Synaptic Terminal (GAT1과 ubiquitin-specific protease Usp14의 결합)

  • Seog, Dae-Hyun;Kim, Sang-Jin;Joung, Young-Ju;Yea, Sung-Su;Park, Yeong-Hong;Kim, Moo-Seong;Moon, Il-Soo;Jang, Won-Hee
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.1005-1011
    • /
    • 2010
  • $\gamma$-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system. GABA transporters (GATs) control extracellular GABA levels by reuptake of released GABA from the synaptic cleft. However, how GATs are regulated has not yet been elucidated. Here, we used the yeast two-hybrid system to identify the specific binding protein(s) that interacts with the carboxyl (C)-terminal region of GAT1, the major isoform in the brain and find a specific interaction with the ubiquitin-specific protease 14 (Usp14), a deubiquitinating enzyme. Usp14 protein bound to the tail region of GAT1 and GAT2 but not to other GAT members in the yeast two-hybrid assay. The C-terminal region of Usp14 is essential for interaction with GAT1. In addition, these proteins showed specific interactions in the glutathione S-transferase (GST) pull-down assay. An antibody to GAT1 specifically co-immunoprecipitated Usp14 from mouse brain extracts. These results suggest that Usp14 may regulate the number of GAT1 at the cell surface.

Developmental Changes of Proteolvtic Activities of 26S Protease Complex and 20S Proteasome in Chick Embryonic Muscle (계배 근조직 발달과정에서의 26S 단백질 분해효소 복합체 및 20S proteasome의 단백질 분해활성의 변화)

  • 이도희;심규석
    • The Korean Journal of Zoology
    • /
    • v.37 no.3
    • /
    • pp.324-330
    • /
    • 1994
  • The multicatalvtic 205 proteasome consisting of 12-15 subunits of 22-35 kDa is the catalytic core of the ATP/ubiquitin-dependent 26S protease complex that also is comprised of multiple subunits of 22-110 KDa. In order to determine whether the proteolvtic activities change during muscle development, the enzyme preparations were obtained from 11-, 14- and 17-day old chick embryonic muscle using a BioGel A-1.5m column. The 26S complex preparation from 14- or 17-day old muscle hvdr olvz e d both N -s uccinvl- Le u- Le u -Val-Tvr-7- amido -4- methvlco umarin ( Suc- LLVY- AMC) and ubiquitin-Ivsozvme conjugates about 50% as well as that from 11-day old muscle. In addition, the activity of 20S proteBsome against Suc-LLVY-AMC also decreased by about 20-30%. However, the protein level of 265 complex remained constant during the entire development period, while that of 205 proteasome increased 5- to 6-fold, as analyzed by nondenaturins polyacrvlamide gel elenrophoresis followed by immunoblot analysis using the antibodies raised against the purified enzymes. Thus, the specific activity of 20S proteasome against the peptide must decrease rather dramatically during the muscle development. These results suggest that the development-dependent changes in the proteolytic activities of both 20S proteasome and 26S protease complect from embryonic muscle are due to alterations in the expression of certain subunits in the enzvmes that are responsible for their specific cataIVtic functions but not to overall changes in the enzyme amounts.

  • PDF