• Title/Summary/Keyword: Uav

Search Result 1,796, Processing Time 0.026 seconds

Selection of Optimal Vegetation Indices and Regression Model for Estimation of Rice Growth Using UAV Aerial Images

  • Lee, Kyung-Do;Park, Chan-Won;So, Kyu-Ho;Na, Sang-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.409-421
    • /
    • 2017
  • Recently Unmanned Aerial Vehicle (UAV) technology offers new opportunities for assessing crop growth condition using UAV imagery. The objective of this study was to select optimal vegetation indices and regression model for estimating of rice growth using UAV images. This study was conducted using a fixed-wing UAV (Model : Ebee) with Cannon S110 and Cannon IXUS camera during farming season in 2016 on the experiment field of National Institute of Crop Science. Before heading stage of rice, there were strong relationships between rice growth parameters (plant height, dry weight and LAI (Leaf Area Index)) and NDVI (Normalized Difference Vegetation Index) using natural exponential function ($R{\geq}0.97$). After heading stage, there were strong relationships between rice dry weight and NDVI, gNDVI (green NDVI), RVI (Ratio Vegetation Index), CI-G (Chlorophyll Index-Green) using quadratic function ($R{\leq}-0.98$). There were no apparent relationships between rice growth parameters and vegetation indices using only Red-Green-Blue band images.

UAV 의사위성 항법 시스템의 항법 메시지 형식 제안

  • Kim, Do-Yun;Park, Byeong-Un;Lee, Sang-Hyo;Jo, Am;Kim, Ji-Hun;Gi, Chang-Don
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.463-466
    • /
    • 2006
  • 본 논문은 UAV를 이용한 항공기 기반 의사위성 항법시스템의 항법 메시지를 설계하는 효율적인 방법에 대해서 다루고 있다. 논문에서는 먼저 GPS 보강 시스템 혹은 독자적인 지역 항법시스템으로 응용이 가능한 UAV 의사위성 시스템에 대해서 설명한다. UAV의 기동은 비교적 짧은 시간 동안 매우 다양하게 변화할 수 있으므로, 위치를 나타내는 항법메시지의 설계에 특별한 고려가 요구된다. 본 연구에서 사용한 방법은 UAV의 직선 경로와 원 경로에 대해 각각 고유한 메시지 형식을 사용하고, 이 각각의 메시지를 nominal 메시지와 deviation 메시지로 구분하였다. 이러한 방식은 메시지의 전체 크기를 줄일 뿐만 아니라 시간 지연 문제에도 효과적으로 대응할 수 있게 한다. 줄어든 메시지 크기로 인해 남게 되는 공간은 다른 유용한 메시지의 전송에 사용할 수 있다. 본 연구에서는 제안된 형식의 성능 검증을 위해서 실제 UAV의 실험 데이터를 분석하였다. 분석에 사용된 데이터가 단일 안테나 GPS 수신기를 사용한 제한된 제어 시스템을 가진 실험 수준의 UAV로부터 얻은 것이었지만, 전체적인 성능은 위성항법시스템에 근접한 수준을 얻을 수 있었다. 본 논문에서 제안된 메시지 형식과 관련 설계 방법은 비행선이나 기구를 이용한 시스템에도 응용할 수 있을 것이다.

  • PDF

auto-pilot flight for UAVs using public Data (공공 데이터를 이용한 UAV 자동경로비행)

  • Park, KyungSeok;Kim, MinJun;Oyindamola, Owolabi Ganiyat;LIU, HUIYU;Kim, SungHo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.242-245
    • /
    • 2019
  • 움직이는 UAV는 많은 위치에너지와 운동에너지를 가지므로 지상으로 추락하는 경우 많은 충격량을 가질 수 있다. 이는 인명피해로 연결될 수 있기 때문에 본 논문에서는 UAV 비행경로 상의 인구밀집지역을 위험구역으로 정의하였다. 기존의 UAV 경로비행은 사용자에 의해 미리 설정된 경로만을 운행하는 수동적인 형태였다. 일부 UAV는 경로비행 중 장애물을 회피하는 시스템 등 안전기능을 포함하고 있지만, 비행환경변화에 대응하기에는 부족하다. UAV 경로비행에 공공 데이터를 활용할 경우, 위험구역을 검출하고 회피비행을 수행할 수 있어서 비행환경변화에 대한 대응이 향상될 수 있다. 따라서 본 논문에서는 수집된 데이터를 활용하여 위험구역을 회피하는 최적경로 비행 방안을 제안한다. 실험결과, 제안하는 자동경로비행에서 목적지와 목적지에 따른 경로를 지정할 경우, 위험지역을 스스로 판단하여 최적 우회경로로 비행하는 것을 확인하였다. 추후 회피방안에 따라 비행하여 획득하는 영상의 질적 만족도를 높일 수 있는 방안을 연구할 예정이다.

Forest Fire Damage Assessment Using UAV Images: A Case Study on Goseong-Sokcho Forest Fire in 2019

  • Yeom, Junho;Han, Youkyung;Kim, Taeheon;Kim, Yongmin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.5
    • /
    • pp.351-357
    • /
    • 2019
  • UAV (Unmanned Aerial Vehicle) images can be exploited for rapid forest fire damage assessment by virtue of UAV systems' advantages. In 2019, catastrophic forest fire occurred in Goseong and Sokcho, Korea and burned 1,757 hectares of forests. We visited the town in Goseong where suffered the most severe damage and conducted UAV flights for forest fire damage assessment. In this study, economic and rapid damage assessment method for forest fire has been proposed using UAV systems equipped with only a RGB sensor. First, forest masking was performed using automatic elevation thresholding to extract forest area. Then ExG (Excess Green) vegetation index which can be calculated without near-infrared band was adopted to extract damaged forests. In addition, entropy filtering was applied to ExG for better differentiation between damaged and non-damaged forest. We could confirm that the proposed forest masking can screen out non-forest land covers such as bare soil, agriculture lands, and artificial objects. In addition, entropy filtering enhanced the ExG homogeneity difference between damaged and non-damaged forests. The automatically detected damaged forests of the proposed method showed high accuracy of 87%.

Characteristics of Rock Slope Joint Using UAV (무인항공기를 활용한 암반비탈면 절리 특성 연구)

  • Kim, Yeon-Kyu;Yoon, Won-Sub;Kim, Seung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.883-890
    • /
    • 2021
  • In this study, joint analysis was conducted on the rock slope by aerial surveying using UAV. Aerial photos were taken using UAV to measure the directionality of the rock slope exposed to the site, and the directionality of the joint was analyzed using the photographed photos. UAV photography was taken under conditions of 90% overlap and an altitude of 50m. The photographing path was measured in the horizontal, vertical, and oblique directions based on the slope, and the joint characteristics were analyzed. Aerial surveying research on the joint directionality analysis of rock slopes is still incomplete, and the method for accurate joint directionality analysis is not presented strategically, so it is difficult to apply it in design. Through the results of this study, we would like to propose an flight photographing technique for the investigation of rock joints. As a result of the study, in the case of the joint investigation of the rock slope using UAV, it was necessary to change conditions such as altitude, aerial photography route, and overlap according to the size of the joint according to the site conditions.

Design of a Smart Attitude Control Algorithm based on the Fuzzy Logic (퍼지 로직 기반 스마트 자세제어 알고리즘의 설계)

  • Oh, Sun Jin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.257-262
    • /
    • 2019
  • Recently, with a great deal of attention and utilization to the UAV like a drone, many application cases using UAV in various fields have been proliferated rapidly. These UAV, however, has many risks like balance deviation and drone crash due to the external environmental factors. The attitude control algorithm for UAV is the most important portion in order to maintain the safe management of UAV, and the best solution is PID control algorithm which is generously used and almost perfect attitude control technology nowadays. In this paper, we propose the smart attitude control algorithm using fuzzy logic in order to provide safe and continuous attitude control against external environmental factors, and compare the performance through simulation study between PID and our algorithm.

The Full-Duplex Device-to-Device Security Communication Under the Coverage of Unmanned Aerial Vehicle

  • Zeng, Qian;Zhang, Zhongshan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1941-1960
    • /
    • 2019
  • Unmanned aerial vehicles (UAVs), acting as mobile base stations (BSs), can be deployed in the typical fifth-generation mobile communications (5G) scenarios for the purpose of substantially enhancing the radio coverage. Meanwhile, UAV aided underlay device-to-device (D2D) communication mode can be activated for further improving the capacity of the 5G networks. However, this UAV aided D2D communication system is more vulnerable to eavesdropping attacks, resulting in security risks. In this paper, the D2D receivers work in full-duplex (FD) mode, which improves the security of the network by enabling these legitimate users to receive their useful information and transmit jamming signal to the eavesdropper simultaneously (with the same frequency band). The security communication under the UAV coverage is evaluated, showing that the system's (security) capacity can be substantially improved by taking advantage of the flexible radio coverage of UAVs. Furthermore, the closed-form expressions for the coverage probabilities are derived, showing that the cellular users (CUs)' secure coverage probability in downlink transmission is mainly impacted by the following three factors: its communication area, the relative position with UAV, and its eavesdroppers. In addition, it is observed that the D2D users or DUs' secure coverage probability is relevant to state of the UAV. The system's secure capacity can be substantially improved by adaptively changing the UAV's position as well as coverage.

Bio-inspired Evasive Movement of UAVs based on Dragonfly Algorithm in Military Environment

  • Gudi, Siva Leela Krishna Chand;Kim, Bo-sun;Silvirianti, Silvirianti;Shin, Soo Young;Chae, Seog
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.1
    • /
    • pp.84-90
    • /
    • 2019
  • Applications of unmanned aerial vehicles (UAVs) in the military environment have become popular because they require minimum human contribution and can avoid accidents during missions. UAVs are employed in various missions such as reconnaissance, observation, aggression, and protection. Consequently, counter-measures, known as anti-drone technologies, have been developed as well. In order to protect against threats from anti-drone technologies and enhance the survivability of UAVs, this study proposes an evasive measure. The proposed bio-inspired evasive maneuver of a UAV mimics a dragonfly's irregular flight. The unpredictable UAV movement is able to confuse enemies and avoid threats, thereby enhancing the UAV's survivability. The proposed system has been implemented on a commercial UAV platform (AR Drone 2.0) and tested in a real environment. The experiment results demonstrate that the proposed flight pattern has larger displacement values compared to a regular flight maneuver, thus making the UAV's position is difficult to predict.

Accuracy verification for unmanned aerial vehicle system for mapping of amphibians mating call (양서류 번식음 맵핑을 위한 무인비행장치 시스템의 정확성 검증)

  • Park, Min-Kyu;Bae, Seo-Hyu
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.2
    • /
    • pp.85-92
    • /
    • 2022
  • The amphibian breeding habitat is confirmed by mating call. In some cases, the researcher directly identifies the amphibian individual, but in order to designate the habitat, it is necessary to map the mating call region of the amphibian population. Until now, it has been a popular methodology for researchers to hear mating calls and outline their breeding habitats. To improve this subjective methodology, we developed a technique for mapping mating call regions using Unmanned Aerial Vehicle (UAV). The technology uses a UAV, fitted with a sound recorder to record ground mating calls as it flies over an amphibian habitat. The core technology is to synchronize the recorded sound pressure with the flight log of the UAV and predict the sound pressure in a two-dimensional plane with probability density. For a demonstration study of this technology, artificial mating call was generated by a potable speaker on the ground and recorded by a UAV. Then, the recorded sound data was processed with an algorithm developed by us to map mating calls. As a result of the study, the correlation coefficient between the artificial mating call on the ground and the mating call map measured by the UAV was R=0.77. This correlation coefficient proves that our UAV recording system is sufficiently capable of detecting amphibian mating call regions.

Location Tracking Method using UAV (무인 비행체를 이용한 위치 추적 시스템)

  • Youm, Sungkwan;Min, Junhong;Shin, Kwang-Seong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.514-515
    • /
    • 2021
  • This paper presents a method to find a target using UAVs in LoRa communication environment. The proposed method proposes a UAV flight path so that the target signal can be found without blind spots. The flight path was changed by using the intensity of the transmitted signal during the flight using the variation of the signal strength. We verified the proposed method by simulation and confirmed that it takes a long time to track the target, although the efficiency of the 3 flights is high. It is best to fly three UAVs to reduce time to find target and increase efficiency when the time is a critical factor. The LoRa communication lowers the production cost and makes it possible to construct the system at low cost.

  • PDF