• Title/Summary/Keyword: Uav

Search Result 1,796, Processing Time 0.025 seconds

Global Unmanned Aerial Vehicle Utilization Research Trends

  • Moon, Ho-Gyeong;Kim, Han;Choi, Nak-Hyun;Kim, Dong-Pil
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.1 no.1
    • /
    • pp.31-40
    • /
    • 2020
  • The rapid development of technologies in unmanned aerial vehicles (UAVs) has led to their use in various areas. UAVs are mainly used for commercial purposes, but their utilization is increasingly important in other areas because their operation cost is less than satellites and aerial imaging. The utilization of UAVs in the environment/ecology area is relatively new. Therefore, identifying the trends of UAV-related spatial information is significant in basic research for UAV utilization. This study quantitatively identified domestic and international research trends related to UAV utilization and analyzed research areas. An attempt was also made to identify upcoming UAV-related topics in the environment/ecology research field using text mining to analyze the bibliographic information of global research literature. Domestic UAV-related studies were classified into seven clusters where basic research on "UAV technology/industry trends" was abundant, and studies on data collection and analysis through UAV remote sensing technology have increased since 2015. Eight clusters were identified for international studies where the most active research area international was "remote sensing technology/data analysis". In addition, Canopy, Classification, Forest, Leaf Area Index, Normalized Difference Vegetation Index, Temperature, Tree, and Atmosphere appeared as the main keywords related to environment and ecology. The appearance frequencies and association strengths were high because the advancement in UAV optical sensor technology and the rapid development of image processing technology enabled the acquisition of data that could not be obtained from existing spatial information. They are recognized as future research topics as related domestic studies have begun corresponding to international research.

Navigation Augmentation in Urban Area by HALE UAV with Onboard Pseudolite during Multi-Purpose Missions

  • Kim, O-Jong;Yu, Sunkyoung;No, Heekwon;Kee, Changdon;Choi, Minwoo;Seok, Hyojeong;Yoon, Donghwan;Park, Byungwoon;Jee, Cheolkyu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.545-554
    • /
    • 2017
  • Among various applications of the High Altitude Long Endurance (HALE) Unmanned Aerial Vehicle (UAV), this paper has a focus on the Global Positioning System (GPS) utilizing pseudolite and its improved performance, particularly during the multi-purpose missions. In a multi-purpose mission, the HALE UAV follows a specified flight trajectory for both navigation applications and missions. Some of the representative HALE missions are remote exploration, surveillance, reconnaissance, and communication relay. During these operations, the HALE UAV can also be an additional positioning signal source as it broadcast signals using pseudolite. The pseudolite signal can improve the availability, accuracy, and reliability of the GPS particularly in areas with poor signal reception, such as shadowed regions between tall buildings. The improvement in performance of navigation is validated through simulations of multi-purpose missions of the solar-powered HALE UAV in an urban canyon. The simulation includes UAV trajectory generation at stratosphere and uses actual geographical building data. The results indicate that the pseudolite-equipped HALE UAV has the potential to enhance the performance of the satellite navigation system in navigationally degraded regions even during multi-purpose operations.

Generating an Autonomous Landing Testbed of Simulated UAV applied by GA (GA를 적용한 모의 UAV의 자율착륙 테스트베드 구축)

  • Han, Changhee
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.1
    • /
    • pp.93-98
    • /
    • 2019
  • In case of unmanned aerial vehicles used in modern society, there has been a problem where a human operator should be still needed to control the UAV because of a lower level of autonomy. In this paper, genetic algorithm is selected as a methodology for the autonomy accomplishment and then we verify a possibility of UAV autonomy by applying the GA. The landing is one of the important classical tasks on aerial vehicle and the lunar Landing is one of the most historical events. Autonomy possibility of computer-simulated UAV is verified by landing autonomy method of a falling body equipped with a propulsion system similar to the lunar Lander. When applying the GA, the genom is encoded only with 4 actions (left-turn, right-turn, thrust, and free-fall) and applied onto the falling body, Then we applied the major operations of GA and achieved a success experiment. A major contribution is to construct a simulated UAV where an autonomy of UAV can be accomplished while minimizing the sensor dependency. Also we implemented a test-bed where the possibility of autonomy accomplishment by applying the GA can be verified.

Development and Application of Remote Airborne Control Simulator for Experimentation of Manned-Unmanned Teaming of Fixed Wing UAV (고정익 유/무인기의 협업 모의를 위한 원격공중통제 시뮬레이터 개발 및 활용방안)

  • Choi, Young Mee
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.56-62
    • /
    • 2021
  • The purpose of this study was to address a Remote Airborne Control Simulator that could simulate manned-unmanned teaming (MUM-T mission) for fixed wing UAV. With rapid technological development of unmanned aerial vehicle (UAV), the mission capability of UAV has tremendously grown. The role of UAV extends from simple reconnaissance to highly automated wingman. Accordingly, the requirement of UAV ground simulator should be modified as well to meet function requirements for simulating a MUM-T mission. A developed remote airborne control simulator was developed for conducting fixed wing UAV MUM-T operation simulations on the ground. The newest MUM-T examples, usage, and application of the developed remote airborne control simulator for MUM-T simulation are also presented in this study.

Modelling of Fixed Wing UAV and Flight Control Computer Based Autopilot System Development for Integrated Simulation HILS Environment (고정익 UAV 모델링 및 비행조종컴퓨터 기반 오토파일럿 통합 시뮬레이션 HILS 환경 구축)

  • Kim, Lamsu;Lee, Dongwoo;Lee, Hohyeong;Hong, Suwoon;Bang, Hyochoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.12
    • /
    • pp.857-866
    • /
    • 2022
  • Fixed-wing UAVs have long endurance and range capabilities compared to other aerial platforms. These advantages led fixed-wing UAVs to become a popular platform for reconnaissance missions in the military. In this research, we modeled fixed-wing UAVs, including the landing gear model and developed a guidance and control system for flight control computers to construct a HILS environment. We also developed an autopilot system that includes automated take-off, cruise, and landing control for UAVs. We also retrived the Aerodynamic coefficients an UAV using Datcom and AVL software and used them for 6 degrees of freedom modeling. The Flight control computer calculates guidance commands using the Carrot chasing guidance law after distinguishing the condition of the UAV based on 16 pre-defined flight modes and calculates control inputs using Nonlinear Dynamic Inversion (NDI) control scheme. We used RTNngine to integrate the Simulink model and flight control computer for HILS environment formulation.

A Study On Performance Evaluation of Cryptographic Module and Security Functional Requirements of Secure UAV (보안 UAV를 위한 암호모듈의 성능평가와 보안성 평가 방법에 대한 연구)

  • Kim, Yongdae;Kim, Deokjin;Yi, Eunkyoung;Lee, Sangwook
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.737-750
    • /
    • 2022
  • The demands of Unmanned Aerial Vehicles (UAVs) are growing very rapidly with the era of the 4th industrial revolution. As the technology of the UAV improved with the development of artificial intelligence and semiconductor technology, it began to be used in various civilian fields such as hobbies, bridge inspections, etc from being used for special purposes such as military use. MAVLink (Macro Air Vehicle Link), which started as an open source project, is the most widely used communication protocol between UAV and ground control station. However, MAVLink does not include any security features such as encryption/decryption mechanism, so it is vulnerable to various security threats. Therefore, in this study, the block cipher is implemented in UAV to ensure confidentiality, and the results of the encryption and decryption performance evaluation in the UAV according to various implementation methods are analyzed. In addition, we proposed the security requirements in accordance with Common Criteria, which is an international recognized ISO standard.

Correlations between the Positioning Accuracy of Waypoint Flight of the Micro-UAV (소형UAV의 프로펠러 개수와 웨이포인트 비행위치 정확성과의 상관관계)

  • Kim, jae-ung
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2016.05a
    • /
    • pp.197-198
    • /
    • 2016
  • 본 연구에서는 소형UAV중 쿼드콥터, 헥사콥터, 옥토콥터를 이용하여 문화재지정구역 현장에서 경로비행을 실제 운용함으로써 명승조사연구에 적용 가능한 소형UAV를 확인하고자 하였다.

  • PDF