• Title/Summary/Keyword: UWB system

Search Result 521, Processing Time 0.027 seconds

A Study on Interference Avoidance Technology in UWB System (UWB 시스템에서의 간섭회피기술에 관한 연구)

  • Kwak, Min-Gil;Sung, Tae-Kyung;Kim, Cheol-Seong;Kim, Dong-Sik;Weon, Young-Su;Cho, Hyung-Rae
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.74-79
    • /
    • 2008
  • CR technology is an intelligent technology which can sense the spectrum environment an adaptively adjust the parameters for wireless transmission. In this paper, by using CR-UWB, the spectrum efficiency of the transmission channel is largely improved; Furthermore, the interference to other system can be effectively avoided. In this paper, we propose a solution on interference problem of UWB system using cognitive radio. We use interference temperature model of cognitive radio that has proposed by FCC for estimating interference signal. Calculating channel capacity of UWB system with interference temperature, we suggest how to solve interference problem. We have used genetic algorithm in cognitive engine's calculation precess. The proposed UWB System with cognitive radio shows very efficient in solving interference problem.

  • PDF

A Noncoherent UWB Communication System for Low Power Applications

  • Yang, Suck-Chel;Park, Jung-Wan;Moon, Yong;Lee, Won-Cheol;Shin, Yo-An
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.3
    • /
    • pp.210-216
    • /
    • 2004
  • In this paper, we propose a noncoherent On-Off Keying (OOK) Ultra Wide Band (UWB) system based on power detection with noise power calibration for low power applications. The proposed UWB system achieves good bit error rate performance which is favorably comparable to that of the system using the ideal adaptive threshold, while maintaining simple receiver structure, In addition, low power Analog Front-End (AFE) blocks for the proposed noncoherent UWB transceiver are proposed and verified using CMOS technology. Simulation results on the pulse generator, delay time generator and 1-bit Analog-to-Digital (AID) converter show feasibility of the proposed UWB AFE system.

Study on signal processing techniques for low power and low complexity IR-UWB communication system using high speed digital sampler (고속 디지털 샘플러 기술을 이용한 저전력, 저복잡도의 초광대역 임펄스 무선 통신시스템 신호처리부 연구)

  • Lee, Soon-Woo;Park, Young-Jin;Kim, Kwan-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.12 s.354
    • /
    • pp.9-15
    • /
    • 2006
  • In this paper, signal processing techniques for noncoherent impulse-radio-based UWB (IR-UWB) communication system are proposed to provide system implementation of low power consumption and low complexity. The proposed system adopts a simple modulation technique of OOK (on-oft-keying) and noncoherent signal detection based on signal amplitude. In particular, a technique of a novel high speed digital sampler using a stable, lower reference clock is developed to detect nano-second pulses and recover digital signals from the pulses. Also, a 32 bits Turyn code for data frame synchronization and a convolution code as FEC are applied, respectively. To verify the proposed signal processing techniques for low power, low complexity noncoherent IR-UWB system, the proposed signal processing technique is implemented in FPGA and then a short-range communication system for wireless transmission of high quality MP3 data is designed and tested.

Analysis of Interference Impacts by UWB System to WiBro Systems

  • Yoon Young-Keun;Jin Rong-Reon;Kim Kyung-Seok;Choi Ik-Guen
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.4
    • /
    • pp.197-203
    • /
    • 2005
  • This paper evaluates the impacts for interference from UWB system, and determines the tolerable UWB power spectral density(PSD) to the new deploying system, which is called a portable internet service in Korea. It also proposes the interference analysis scheme that can evaluate the characteristics of the performance degradation for portable internet service according to the emission power of UWB systems at the specified frequency bands. The proposed scheme includes a multi-rate and data service environments to deal with interference to portable internet service. It is obtained from simulation results that the transmission PSD of UWB systems should be rigidly restricted by less approximately 10 ${\~}$ 20 dB than FCC provisional limit for coexistence between UWB and portable internet service already allocated at 2.3 GHz frequency bands in Korea.

A Study on the Implementation Considerations of Communication System for Wireless Ranging Applications (무선 거리인식 응용을 위한 통신시스템 구현 고려사항에 관한 연구)

  • Roh, Jae-Sung;Kim, Sung-Chul;Shin, Yu-Sub
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.563-565
    • /
    • 2011
  • In this paper, the implementation consideration of communication system is suggested in IEEE 802.15.4a based wireless sensor network, and the practical issues for UWB ranging system design are investigated. First, design of UWB signals for ranging applications is considered, and selection of various signal parameters is studied. Then, link analysis is performed in order to determine UWB signal quality as a function of distance.

  • PDF

On the Interference of Ultra Wide Band Systems on Point to Point Links and Fixed Wireless Access Systems

  • Giuliano, Romeo;Guidoni, Gianluca;Mazzenga, Franco
    • Journal of Communications and Networks
    • /
    • v.6 no.2
    • /
    • pp.163-172
    • /
    • 2004
  • Ultra Wide Bandwidth (UWB) spread-spectrum techniques will playa key role in short range wireless connectivity supporting high bit rates availability and low power consumption. UWB can be used in the design of wireless local and personal area networks providing advanced integrated multimedia services to nomadic users within hot-spot areas. Thus the assessment of the possible interference caused by UWB devices on already existing narrowband and wideband systems is fundamental to ensure nonconflicting coexistence and, therefore, to guarantee acceptance of UWB technology worldwide. In this paper, we study the coexistence issues between an indoor UWB-based system (hot-spot) and outdoor point to point (PP) links and Fixed Wireless Access (FWA) systems operating in the 3.5 - 5.0 GHz frequency range. We consider a realistic UWB master/slave system architecture and we show through computer simulation, that in all practical cases UWB system can coexist with PP and FWA without causing any dangerous interference.

GNSS-UWB Hybrid Positioning System for Indoor and Outdoor Seamless Positioning (산업현장에서의 실내외 연속측위를 위한 GNSS-UWB 하이브리드 측위 시스템)

  • Yong Jun, Chang;Joung Wook, Lee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.27 no.1
    • /
    • pp.139-142
    • /
    • 2023
  • In this paper, we propose a GNSS-UWB hybrid positioning system for indoor and outdoor seamless positioning. Fusion of GNSS and inertial sensors has been widely used as a method for estimating positions in places where GNSS reception sensitivity is low, and UWB technology, which started as a short-range wireless communication technology, is widely used indoors where GNSS is completely blocked. This paper proposes a method of mutual correction and fusion of the location information collected through GNSS and the location information collected from the UWB indoor positioning system when indoor and outdoor work occurs continuously and repeatedly, such as in an industrial site.

On the Degradation of a UWB System Due to a Realistic TX-RX Antenna System

  • Jun, Min-Sik;Oh, Tae-Won
    • ETRI Journal
    • /
    • v.27 no.4
    • /
    • pp.453-456
    • /
    • 2005
  • The ultra-wideband (UWB) signal radiation process in an antenna is different from that of a narrowband signal. In this paper, we study the degradation of the desired signal component according to the antenna structure and location of a receiver in a bipolar time-hopping UWB system. And we propose a receiver structure with an adaptive template waveform generator to compensate for the degradation caused by a realistic TX-RX antenna system.

  • PDF

Design and Implementation of Multi-Sensor-based Vehicle Localization and Tracking System (멀티센서 기반 차량 위치인식 시스템의 설계 및 구현)

  • Jang, Yoon-Ho;Nam, Sang-Kyoon;Bae, Sang-Jun;Sung, Tae-Kyung;Kwak, Kyung-Sup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.121-130
    • /
    • 2009
  • In this paper, Gaussian probability distribution model based multi-sensor data fusion algorithm is proposed for a vehicular location awareness system. Conventional vehicular location awareness systems are operated by GPS (Global Positioning System). However, the conventional system is not working in the indoor of building or urban area where the receiver is difficult to receive the signal from satellites. A method which is combined GPS and UWB (Ultra Wide-Band) has developed to improve this problem. However, vehicular is difficult to receive seamless location information since the measurement systems by both GPS and UWB convert the vehicle's movement information separately at each sensor. In this paper, normalized probability distribution model based Hybrid UWB/GPS is proposed by utilizing GPS location data and UWB sensor data. Therefore the proposed system provides information with seamless and location flexible properties. The proposed system tested by Ubisense and Asen GPS in the $12m{\times}8m$ outdoor environments. As a result, the proposed system has improved performance for accurateness and connection ability between devices to support various CNS (Car Navigation System).

  • PDF

A CMOS UWB RFIC Based Radar System for High Speed Target Detection (초고속 이동체 탐지에 적합한 초광대역 CMOS RFIC 기반 레이다 시스템)

  • Kim, Sang Gyun;Eo, Yun Seong;Park, Hyung Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.5
    • /
    • pp.419-425
    • /
    • 2017
  • This paper presents CMOS UWB RFIC based radar system for high speed target detection. The system can achieve resolution of 15 cm and detection range of 15 m. For developed system, single chip CMOS UWB IC is implemented. To reduce the measuring and processing time, envelope detection and equivalent time sampling technique are used. Measurement results show that the bandwidth and center frequency of UWB pulse can be adjusted in the range of 0.5 GHz~1.0 GHz, 3.5 GHz~4.5 GHz, respectively. Signal processing time including scan time over 15 m distance is about $150{\mu}sec$.